本文為「經濟部產業技術司科技專案成果」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國數州將就大麻合法化與否舉行公民投票美國總統選舉於11月8日舉行,數州針對大麻合法化與否一併進行公民投票,針對娛樂用大麻(Recreational Maijuana)議題舉辦公投共有五州,分別為加州、內華達州、亞里桑那州、緬因州以及麻州;而針對醫療用大麻(Medical Marijuana)議題舉行公投則有四州,係佛羅里達州、阿肯色州、北達科他州以及蒙大拿州,其中蒙大拿州原已開放醫療用大麻,本次公投案係放寬現行法規之限制。公投結果顯示,除亞里桑那州公投案未通過外,其餘各州公投案皆已通過。 民調公司蓋洛普(Gallup)於十月公布之民調顯示,美國民眾支持大麻合法化比例,已從1969年的12%爬升至目前的60%。本次各州公投案通過後,將對美國聯邦政府近80年的大麻禁令產生極大壓力。就經濟層面觀察,美國研究機構ArcView Market Research研究報告統計,全美目前合法管道銷售大麻金額從2014年的46億美元成長至54億美元,而作為全美最大經濟體的加州,依投資分析公司Cowen and Company分析,該州本次公投案通過將使全美大麻產業成長三倍,甚至於2026年市場規模將成長至500億美元。大麻合法化後,依「加州大麻業者協會」(California Cannabis Industry Association)估計,將為加州州稅增加十億美元的收入。根據統計,此一趨勢中,推動大麻合法化一方投入約兩千兩百萬美元支持加州公投案,而反對方則投入約兩百萬美元。
美國眾議院一致通過電子郵件保護法案美國眾議院於2016年4月27日一致同意通過支持電子郵件保護及雲端隱私法案(Email Privacy Act, EPA),本法案之後將會要求執法部門於搜查電子郵件或儲存於雲端設備的資料時,必須向法院取得搜查令,才能取得超過180天以上的資料。 本法案係針對1986年推出的《電子通信隱私法(Electronic Communication Privacy Act, ECPA》進行補強,因為目前科技的進步,早已遠超過ECPA是在網路興起前所得規制的範圍,在當初ECPA法案訂定之初,人民仍有定期刪除E-mail以保持硬碟空間的習慣,但相較於現在多數人都已使用雲端信箱的習慣下,如仍能讓警方等恣意調查任何人的信箱,往往可取得巨量的消息,因此本次的修正可預期將更能使相關規範符合時宜需求。 本次修正重點如下: 1.過往之ECPA規定要求聯邦機構在調查超過180天的電子郵件時只需要取得傳票即可,現在則是需要取得搜查令。 2.要求政府機構必須先取得法院的搜查令,才可以要求供應者揭露其保有之資訊。 3.要求執法部門應於取得資料的10天內向資料被揭露者提供相關證明,如涉及政府單位者則縮短至3天。 雖然EPA在眾議院內獲得美國兩黨的一致通過,但仍須經參議院下一波的投票表決,才能決定本案是否得順利通過。
演算法歧視將適用於《紐澤西州反歧視法》2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。