本文為「經濟部產業技術司科技專案成果」
美國加州議會於2018年9月7日通過Asilomar人工智慧原則決議(23 Asilomar AI Principles, ACR-215),此決議表達加州對於「23條Asilomar人工智慧原則」之支持,以作為產業或學界發展人工智慧、政府制定人工智慧政策之指標,並提供企業開發人工智慧系統時可遵循之原則。依此法案所建立之重要指標如下: (1)於研究原則上,人工智慧之研究應以建立對於人類有利之人工智慧為目標。 (2)於研究資助上,人工智慧之研究資助應著重幾個方向,如:使人工智慧更加健全且可抵抗外界駭客干擾、使人工智慧促進人類福祉同時保留人類價值以及勞動意義、使法律制度可以順應人工智慧之發展。 (3)於科學政策之連結上,人工智慧研究者與政策擬定者間應有具有建設性且健全之資訊交流。 (4)於研究文化上,人工智慧研究者應保持合作、互信、透明之研究文化。 (5)於安全性上,人工智慧研究團隊應避免為了研究競爭而忽略人工智慧應具備之安全性。 (6)人工智慧系統應該於服務期間內皆具備安全性及可檢視性。 (7)人工智慧系統之編寫,應可使外界於其造成社會損失時檢視其出錯原因。 (8)人工智慧系統如應用於司法判斷上,應提供可供專門人員檢視之合理推論過程。 (9)人工智慧所產生之責任,應由設計者以及建造者負擔。 (10)高等人工智慧內在價值觀之設計上,應符合人類社會之價值觀。 (11)高等人工智慧之設計應可與人類之尊嚴、權利、自由以及文化差異相互調和。 (12)對於人工智慧所使用之資料,其人類所有權人享有擷取、更改以及操作之權利。 (13)人工智慧之應用不該限制人類「客觀事實上」或「主觀知覺上」之自由。 (14)人工智慧之技術應盡力滿足越多人之利益。 (15)人工智慧之經濟利益,應為整體人類所合理共享。 (16)人類對於人工智慧之內在目標應享有最終設定權限。 (17)高等人工智慧所帶來或賦予之權力,對於人類社會之基本價值觀應絕對尊重。 (18)人工智慧所產生之自動化武器之軍備競賽應被禁止。 (19)政策上對於人工智慧外來之發展程度,不應預設立場。 (20)高等人工智慧系統之研發,由於對於人類歷史社會將造成重大影響,應予以絕對慎重考量。 (21)人工智慧之運用上,應衡量其潛在風險以及可以對於社會所帶來之利益。 (22)人工智慧可不斷自我循環改善,而可快速增進運作品質,其安全標準應予以嚴格設定。 (23)對於超人工智慧或強人工智慧,應僅為全體人類福祉而發展、設計,不應僅為符合特定國家、組織而設計。
美國專利標示不實之罰金計算美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。 為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。 The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。
2005 台日科技高峰論壇 揭示綠色環保的新契機「 2005 台日科技高峰論壇」於本﹙九﹚月 16 、 17 日在台北圓山飯店盛大展開,與會者包括台日高階產官學研代表,分就環境政策、環保科技及綠色產品等議題進行交流,研擬未來可能進行的合作模式。 於第一天開幕式中,亞東關係協會科技交流委員會主任委員蕭萬長即表示,藉由科技論壇可以增加政策和策略的相互了解,並減少重複浪費的研發 ; 藉由知識相互激盪可以維持競爭力和高度經濟成長,創造雙贏的局面。日本交流協會台北事務所的池田維代表則指出,先前日本於八大工業高峰會議中所倡議的 3R(REDUCE 、 REUSE 、 RECYCLE) 觀念,獲得各國極力贊成,他希望將日本特性表現在本次研討內容中,以加強彼此合作。 台日科技高峰論壇從 2003 年 4 月成立後,今年乃第三度在台灣舉行,與會貴賓包括日本眾議員水野賢一﹙ Mizuno, Kenichi ﹚ , 以「日本環境政策」發表專題演說;地球環境戰略研究機關理事長森 ( 山鳥 ) 昭夫﹙ Morishima, Akio ﹚則以「建構環保型產業」為題,自法律觀點說明,日本政府如何透過修訂法規之方式,逐步落實 3R 理念及其他永續發展措施;除此之外,日本 JST 、東京大學、北九州市立大學、日立製作所、東元電機、豐田汽車、福特六和汽車等台日環保科技代表亦分就「綠色產品」、「環保科技」等面向擬定專題發表談話。預料本次研討內容,對於未來台日科交流將能形成實質的幫助 , 並為未來科技發展指出綠色環保的新契機。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。