美國貿易代表署公布最新特別301名單,我國從優先觀察名單降級成為一般觀察名單,經濟部智慧財產局長蔡練生表示,我們的目的是希望能除名,儘管這次只是降級,還是積極爭取希望在5月的年度報告能夠獲得除名。蔡練生表示,美國貿易代表署去年5月3日公布2004年特別301名單,我國列為優先觀察名單,並宣布去年秋季會進行不定期檢討,當時同樣被列為不定期檢討對象還包括馬來西亞和波蘭,不過這次只有台灣獲得降級。 台灣已經連續四年名列美國特別301優先觀察國家名單,近年來政府修法,加強取締盜版,獲得美國方面認同,今年終於獲得降級,並在美東時間1月18日正式公布我國降級。 蔡練生指出,優先觀察名單和一般觀察名單之間的差異是層次問題,列為優先名單者美國會給予六個月的觀察期,讓其改善機會,如果沒有改善就會採取貿易報復手段;一般觀察名單的觀察期,則延長為一年。
美國司法部向Google提出反托拉斯訴訟,控Google之反競爭策略損害消費者權益且扼殺創新美國司法部(United States Department of Justice)與11個州檢察總長2020年10月20日於哥倫比亞特區地方法院聯合向Google提起反托拉斯民事訴訟,依據《休曼法》(Sherman Act)第2條,以「非法利用優勢地位進行排他行為,強化自身市場力量」為由起訴 Google。美國司法部認為,Google利用自身在電子數位設備提供搜尋服務和搜尋廣告市場(search advertising markets)的壟斷地位,損害競爭對手和消費者利益,並利用特殊協議和商業慣例,佔據美國九成以上的搜尋市場,在網頁瀏覽器和手機搜索領域建立難以被超越的商業優勢。Google的反競爭策略(anticompetitive tactics)讓它能維持甚或擴大壟斷地位,削弱競爭並扼殺創新。 美國司法部與阿肯色州、佛羅里達州、喬治亞州等11個州聯合提出訴訟,指稱Google達成一系列的排他性協議(exclusionary agreements),要求將Google設置為數十億用戶之手持行動裝置或電腦的預設搜尋引擎,並且在許多情況下禁止預先安裝(preinstallation)競爭對手軟體。起訴書指稱Google透過以下方式違法維護搜尋和搜尋廣告的壟斷地位:(1)簽訂排他性協議,禁止預先安裝任何競爭對手的搜尋服務;(2)無視消費者意願,包裹式(tying)安排強迫Google搜尋軟體APP需預先安裝在行動設備的主要位置,且不可刪除;(3)與Apple達成長期協議,將Google作為Safari瀏覽器或其他搜尋工具的預設搜尋引擎(但實際上是獨家搜尋引擎);(4)利用自身獨占優勢和利潤,給予設備商、網頁瀏覽器業者和其他搜尋工具業者更多的優惠待遇,創造無間斷的強化獨占循環。 司法部認為,Google的反競爭措施阻止其它競爭對手達到經營規模,進而消除美國大多數搜尋查詢的競爭。也因為限制競爭,Google得以降低搜尋品質(例如引起隱私、資料保護、和消費者利用爭議等),從而損害消費者並阻礙創新;此外Google可以向廣告客戶收取高於市場價格之費用,並降低客戶服務品質。 而面對美國司法部控訴,Google表示這些指控具有「嚴重瑕疵」(deeply flawed),消費者選擇Google並非被強迫,而是因為Google是最優秀的搜尋工具。蘋果的Safari瀏覽器預設使用Google搜尋,是因為蘋果公司認可Google搜尋的品質,且競爭對手(Bing和Yahoo!)亦以付費方式出現在Safari介面可供消費者選擇。而微軟在Windows設備上預載之Edge瀏覽器,是以Bing為預設搜尋工具。此外,Google和Android營運商和設備商簽訂促銷協議以推廣Google,該協議可以直接降低手機價格;但即使簽署協議,Android仍會預載其他競爭者的APP和APP Store。是故,Google認為司法部若勝訴,將讓消費者只能用品質較差的搜尋工具以及支付更高的手機價格。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
挪威政府提案修改著作權法,將處罰把CD音樂複製成MP3檔案之行為為解決日益猖狂的網路侵權行為,挪威政府已提出著作權法修正草案,針對侵害著作權及網路盜版行為處以罰金及三年以下有期徒刑之刑責。其中最主要的就是要遏止破解DVD及CD之科技保護措施以及處罰提供軟硬體進行破解之行為。不過,在修正草案下,為個人使用之目的而複製CD或DVD之行為,即便在此過程中意味有破解科技保護措施之行為存在,仍不構成違法;但是,若破解科技保護措施而將CD歌曲轉換成MP3格式則構成侵權行為。 此一修正案的提出雖獲業界一致喝采,但是亦受到學者的抨擊,認為此修正案內容定義不清,完全無法執行。由於挪威國會預計於今年三、四月審查此案,若能順利過關,最快將於今年七月正式施行,不過未來如何發展,仍存在相當變數,值得追蹤觀察。