美國聯邦通訊委員會(Federal Communication Commission, FCC)於今年1月15日頒佈一項新命令,禁止進一步經銷或出售使用700MHz頻段(698-806MHz)的無線麥克風等設備。700MHz頻段在2009年6月12日數位電視轉換完成後,已不再供電視台廣播使用。FCC表示此項命令的頒佈,目的在清空700MHz頻段,以避免上述設備對目前使用此一頻段的公共安全通訊(如警察、消防及緊急服務)與商用無線通訊服務,產生妨害性干擾。上述設備所使用之頻段,先前已由主要無線通訊業者以約200億美元標得執照。
FCC頒佈此項新命令,將影響百老匯劇院、運動聯盟及其他公眾娛樂團體目前利用700MHz頻段經營的無線麥克風系統。在新命令頒佈前,上述團體曾表示希望維持繼續使用部份700MHz頻段,並表示其使用將不會對新的使用者造成干擾,惟FCC並未採納其意見。
為確保目前使用700MHz頻段免執照設備的個人或團體,能有充分時間轉換至適當之替代頻段,FCC將允許其繼續使用至今年6月12日止。同時,對於先前已購買使用700MHz頻段設備之消費者,亦提出相關計畫以提供協助。
2018年1月10號,美國交通部部長趙小蘭於出席內華達州拉斯維加斯之消費者科技聯盟(Consumer Technology Association)大會時表示,美國交通部正在研擬發布新版之聯邦自駕車政策3.0(Federal Automated Vehicle Policy 3.0, FAVP3.0)以因應自動駕駛技術於未來對安全性、機動性與消費者權益之衝擊。該聯邦自駕車政策3.0將會是一個綜合整體運輸業概況之自動駕駛政策,其將讓自動化運輸系統,包括,車子、貨車、輕軌、基礎設施與港口得以安全的整合。 為了達成上述目的,且讓公眾的意見得以協助辨識美國聯邦法規必須配合修正之部分,並鼓勵更多的創新研發。美國交通部於其網站上也發起了數個自動化車輛技術之意見徵集,讓其能更準確的找出當前美國法規對於自動駕駛技術創新所造成之阻礙。 該意見徵集主要分為四項,第一項是由美國交通部聯邦公路管理局(Federal Highway Administration, FHWA)主管,針對如何將自動駕駛系統整合進入公路運輸系統之資訊徵求書(Request for Information, RFI)。 第二項與第三項則是由聯邦公共運輸局(Federal Transit Administration, FTA)分別針對自駕巴士研究計畫(Automated Transit Buses Research Program)與移除相關障礙所發出之意見徵詢書(Request for Comments, RFC)。 最後一項則是由交通部國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)主管,針對移除自駕車法規障礙所發布之意見徵詢。
英國政府公布物聯網設備安全設計報告,提出製造商應遵循之設計準則草案英國數位、文化、媒體暨體育部於2018年3月8日公布「安全設計(Secure by Design)」報告,此報告目的在於使IoT設備製造商於製程中即採取具有安全性之設計,以確保用戶之資訊安全。 此報告中包含了一份經英國國家網路安全中心(National Cyber Security Centre, NCSC)、製造商及零售商共同討論後,提出之可供製造商遵循之行為準則(Code of Practice)草案。 此行為準則中指出,除設備製造商之外,其他包含IoT服務提供者、行動電話軟體開發者與零售商等也是重要的利益相關人。 其中提出了13項行為準則:1. 不應設定預設密碼(default password);2. 應實施漏洞揭露政策;3. 持續更新軟體;4. 確保機密與具有安全敏感性的資訊受到保護;5. 確保通訊之安全;6. 最小化可能受到攻擊的區域;7. 確保軟體的可信性;8. 確保個資受到妥善保障;9. 確保系統對於停電事故具有可回復性;10. 監督自動傳輸之數據;11. 使用戶以簡易的方式刪除個人資訊;12. 使設備可被容易的安裝與維護;13. 應驗證輸入之數據。 此草案將接受公眾意見,並於未來進一步檢視是否應立相關法律。
醫療物聯網(The Internet of Medical Things, IoMT)醫療物聯網(The Internet of Medical Things, IoMT)之意義為可通過網路,與其它使用者或其它裝置收集與交換資料之裝置,其可被用來讓醫師更即時地瞭解病患之狀況。 就運用的實例而言,於診斷方面,可利用裝置來連續性地收集關鍵之醫學參數,諸如血液生化檢驗數值、血壓、大腦活動和疼痛程度等等,而可幫助檢測疾病發作或活動的早期跡象,從而改善反應。於療養方面,由於患者的手術後恢復時間是整個成本花費之重要部分,故縮短療養時間是減少成本之重要要素。可利用穿戴式感測器來幫助運動、遠端監控,追蹤各種關鍵指標,警示護理人員及時作出回應,並可與遠距醫療相結合,使加速恢復更加容易。於長期護理方面,可藉由裝置之測量與監控來避免不良結果與延長之恢復期。 由於機器學習和人工智慧之共生性增長,醫療物聯網之價值正在增強。於處理來自於感測器醫療裝置之大量連續資訊流時,資料分析和機器學習可更快地提供可據以執行之結論以幫助治療過程。惟醫療物聯網亦可能面臨安全與標準化之挑戰。由於醫療保健的資料是駭客的主要目標,任何與網路連接之設備都存在安全性風險。此外,隨著相關裝置被廣泛地運用,即需要標準化以便利裝置之間的通訊,製造商和監管機構皆需尋找方法來確保裝置可在各種平台上安全地通訊。