美國專利標示不實之罰金計算

  美國聯邦巡迴上訴法院在2009年底於The Forest Group Inc. v. Bon Tool Co. 一案中將美國專利法35 U.S.C. § 292中關於不實專利標示(false patent marking)的懲罰金計算方式認定為罰金之計算是以每一個標示錯誤專利資訊的產品為基礎。美國專利法35 U.S.C. § 292中要求法院對專利資訊標示不實或錯誤之產品或包裝處以最高美金$500的罰金。在此案之前,許多地方法院將35 U.S.C. § 292解釋為罰金之計算是以每一次被告”決定”將產品標示不實專利資訊為基礎 (single penalty for each “decision” to falsely mark products),不論此決定是包含一個或一整批產品。在本案中,聯邦巡迴上訴法院同意地方法院的看法認定被告Forest Group意圖藉不實專利標示企圖欺騙大眾但撤銷地方法院將罰金定為$500之判定,而將目前專利法35 U.S.C. § 292 解釋為罰金是以”每一個”標示錯誤專利資訊的產品為基礎 (penalty for false marking on a per article basis)。

 

  為了防範日後因此案罰金計算方式而造成所謂”標示流氓”(marking trolls) 之興起,聯邦法院於其判決中特別說明其解釋並非要求法院必須將每一標示錯誤專利資訊的產品處以$500美元的罰金。因法條中之罰金是以美金$500為上限,法院有權利權衡各案例背景決定罰款金額。例如,針對大量製造但價錢低廉的產品, 法院可對每一個產品處以極少的罰金。

 

  The Forest Group 一案是美國聯邦巡迴上訴法院第一次針對不實專利標示之罰金提出解釋,直得關注其後續引發反應。廠商也應重新檢視其產品專利標示是否有不實或錯誤之狀況以避免被控標示不實專利資訊而被處以罰款。

相關連結
※ 美國專利標示不實之罰金計算, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3241&no=55&tp=1 (最後瀏覽日:2025/11/22)
引註此篇文章
你可能還會想看
歐洲資料保護監督官12月7日發表正式意見,針對歐盟執委會就AFSJ大型資訊技術系統設立作業管理機構之立法計畫,提出隱私保護法律要求

  歐洲資料保護監督官(European Data Protection Supervisor, EDPS)於2009年12月7日,針對歐盟執委會(European Commission)近年所提出關於設立歐盟「自由、安全及司法領域」(area of freedom, security and justice, AFSJ)大型資訊技術系統(IT System)作業管理機構之立法計畫,基於個人資料保護之立場提出正式法律意見。如此一立法計畫順利通過,該機構預計將擔負起包括「申根資訊系統」(Schengen Information System, SIS II)、「簽證資訊系統」(Visa Information System, VIS)、「歐洲指紋系統」(European Dactylographic System, Eurodac)及其他歐盟層級之大規模資訊技術系統之作業管理(operational management)任務。   根據EDPS首長Peter Hustinx表示,由於前述各項系統之資料庫中均包含諸如護照內容、簽證及指紋等大量敏感個人資料,因此儘管設立單一之作業管理機構,可以在相當程度上釐清歐盟各部門職責歸屬及準據法適用之問題,但如此一機構欲取得合法性,其活動範圍及相關責任即必須在立法中獲得明確界定,否則即可能產生個人資料濫用(misuse of personal data)及資料庫「功能潛變」(function creep)之風險。而基於此一分析,Hustinx認為目前執委會之機構立法計畫尚未符合個人資料保護要求。   此外,針對後續立法進程,EDPS建議除應確實釐清該管理機構之活動範圍是否包括整體AFSJ,亦或僅限於邊境檢查及難民與移民事務;執委會與該機構之關聯性與責任等重要問題外,是否可在缺乏相關經驗及實證評估下,即直接將所有歐盟層級之大型資訊技術系統與資料庫歸入該機構管轄,顯然亦有商榷餘地。EDPS就此認為,透過立法界定「大型資訊系統」之範圍,並且採取資料庫分次進入該管理機構責任範圍之方式,應係日後執委會可以努力之方向。

澳洲國家交通委員會提出「自駕車政策革新報告」,並展開「控制自駕車規範建議」意見徵詢

  2016年11月澳洲國家交通委員會(簡稱NTC)公布「自駕車政策革新報告」(Regulatory reforms for automated road vehicles Policy Paper),當中釐清對自駕車各項可能遭遇的法規障礙並設定修正時程,2017年4月16號NTC並進一歩依前份文件規劃提出「控制自駕車相關規範建議」討論文件,釐清自駕車的控制定義與相對應規範,並提出法制規範修正內容。   2016年澳洲政府並通過了關於陸路交通科技的「政策原則」(Policy Principles),其中包括政府決策時應基於改善交通安全、效率、永續發展和成果的可能實現,並且應以消費為中心等原則,這些原則構成了澳洲政府的政策框架。   澳洲NTC此份討論文件中,提出應釐清能「控制(in control)」自駕車的對象,此將影響自駕車事故的負責人為誰。NTC提出目前仍應定義人類駕駛為控制自駕車的一方而非自駕系統,以避免人類駕駛做出不適當的操作行為。   NTC並釐清「恰當控制」的定義。「恰當控制」為澳洲道路法規第297條第1項:「駕駛者不得駕駛車輛除非其有做出恰當控制」中所規範。恰當控制被目前的執法機關詮釋為駕駛者應坐在駕駛座上並至少有一隻手置於方向盤上。但「恰當控制」將因自動駕駛系統的操作方式受到挑戰。因此NTC認為「恰當控制」不一定需要將手置於方向盤上,而是要有足夠的警覺性和能即時進行干涉,此定義並應隨著科技發展而修正。   本次政策文件意見徵詢至2017年6月2日,收到意見後NTC將會意見納入未來的全國性實施政策方針,提交給澳洲交通與基礎建設諮議會(Transport and Infrastructure Council)通過,預計於2017年年底前完成此自駕車方針。

為加速解決智財、民事相關爭議,日本推動司法制度改革

  日本政府一直希望能透過改革司法制度,用以解決日本日益增加的跨國民事、智財爭議、消費爭議等案件,故從今(2019)年4月起,日本內閣官房聯合日本最高法院、法務省、外務省等相關單位,積極針對現行的司法制度進行檢討。日本政府期盼透過這次的司法改革,能降低訴訟成本、加速解決爭議案件。   日本內閣官房,於12月9日發表了第九次民事司法制度改革推進會議的決議,這次的會議針對日本現行的民事訴訟程序制度提出了制度改革大綱與具體的改革建議,如日本現行的民事裁判應進行全面IT化,並希望擴充非訟事件的類型。   在這次的會議中,有三個主要的重點:首先在民事裁判上,將增加訴訟代理人律師有提出電子化訴訟文件之義務,民事訴訟法修法通過後,要求訴訟代理人應線上提出訴訟相關文件,未來也會進一步要求本人自訴的案件,自訴者也負有與訴訟代理人同等之義務。   再者在智慧財產爭議案件上,日本政府正在評估是否導入「二階段訴訟制度」。未來在專利權是否侵權的判斷上,會將侵權與否的判斷與損害賠償的裁量拆分為兩階段,且未來在判斷與裁量上,希望法院能採用第三方的專家學者意見做為判斷的依據。   最後,為因應近年的國際化社會,日本新設了「日本國際紛爭解決中心」,希望能強化現行商業爭議案件的裁判程序。另外擴充了現行「國民生活中心」裡「越境消費者中心CCJ」的功能,除了針對跨境消費者外,更提供了在日外國人多國語言的諮詢管道。綜上所述,未來將會修正日本現行的民事訴訟法、專利法等相關法規,司法制度改革細節預計於2020年3月做出最終決議。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」。

歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

TOP