2009年2月美國總統歐巴馬簽署美國振興經濟方案,釋出72億美元擴展寬頻網路連結應用,以網路開放為前提,要求聯邦通訊委員會提出國家寬頻計劃。美國聯邦通訊委員會(FCC )在2010年3月12日公布將推動一項歷時十年的遠大計畫,希望透過建立高速網際網路,重塑美國媒體與科技優先順序的概念。該計畫預定2010年3月16日送交國會。
這項計畫反映美國正視寬頻網路正逐漸成為取代電話與廣播電視業的普通媒介,工作重點在於強化網際網路存取方便性。該項計畫的重點包括補助網際網路提供者佈建偏遠地區的網路服務、拍賣頻譜以供無線寬頻設備使用,以及發展新型態的有線電視與上網功能之全面式機上盒。
此一計畫牽涉數百億美元的聯邦經費,但FCC認為,應可透過拍賣頻譜自給自足。此外,該計畫中的部分建議,尚須國會採取行動與業者支持才能落實,至於使用者恐怕要在數年後才能看到效果。
目前美國在使用寬頻與高速上網等方面落後包括亞洲國家在內的許多國家,約超過30%的美國人無法上網,原因是負擔不起或是沒有意願使用。而FCC的計畫希望能將美國打造成一個完全網路連結的環境,透過還有待矽谷研發的無線裝置讓民眾能快速上網取得健保資訊、進行網路學習,以及進行警民連線。
不過,FCC必須審慎處理既有業者上網費率與品質的問題,此外,不少電視業者以供公眾利益為由反對,並抗拒交回頻譜,以及認為這樣計畫將會導致訊號覆蓋及干擾的問題。
瑞典最高法院(Högsta domstolen)於2015/11/18 針對集管團體Copyswede 與瑞典電信公司Telia Sonera 之訴訟案發出審查允許(prövningstillstånd)之決定。此案之爭點在iPhone手機若屬於瑞典著作權法 § 26 k上之為私人重製之工具(en produkt som är särskilt ägnad för privatkopiering),則應納入私人重製補償金之對象。 Copyswede是依瑞典著作權法管理私人重製補償金之團體,於本案中向Telia Sonera 請求繳納補償金,理由在於瑞典電信公司Telia Sonera自2009/01/01進口iPhone各型式手機,Copyswede主張iPhone手機型式為一種適合用於私人重製之工具,故Telia Sonera應繳納補償金,於是向此案一審法院Södertörns tingsrätt提出訴訟。一審法院以iPhone手機之功能及其實際使用情形為判斷基準,以中間裁定方式(Mellamdom)認定iPhone手機確屬瑞典著作權法上之「私人重製之工具」,二審法院Svea hovrätt亦採相同見解。不服此一認定之Telia Sonera於是請求瑞典最高法院進行審查。
歐盟數位經濟公平稅負指令草案無共識,法國與奧地利將先行交付立法2018年3月21日,歐盟執行委員會(European Commission)發布數位經濟公平課稅(Fair Taxation of the Digital Economy)指令草案,指出在數位經濟模式中,由於創造利益的用戶資料地並不受限於營業處所,因此銷售貨物與提供勞務之增值發生地,與納稅主體之納稅地點分離,而無法為現行來源地原則所評價,嚴重侵蝕歐盟境內稅基。對此,該草案分別提出了數位稅(Digital Tax)與顯著數位化存在(Significant Digital Presence)兩份提案,用以針對特定數位服務利潤制定共同性數位稅制,以確保數位服務業者與傳統的實體公司立於平等的市場競爭地位。 值得關注的是,該草案之長遠解決提案以「顯著數位化存在」(Significant Digital Presence)修正國際間課稅權歸屬之重要人事(Significant People function)功能判斷,並認為建立利潤分配原則時,應參考經濟合作暨發展組織(Organization for Economic Cooperation and Development)稅基侵蝕與利潤移轉(BEPS,Base Erosion and Profit Shifting)行動計劃中DEMPE模式(Development Enhancement Maintenance Protection Exploitation function),決定獲利之分配,作為未來增值利益的認定。 然而不少持反對意見的國家認為,數位經濟只是傳統公司面對數位化,利用無形資產的商業模式改變而已,而此種新興模式並不足以作為開徵數位稅收新稅種。縱使數位經濟下無形資產產生之價值必須重新界定,現行稅收歸屬與國際間租稅協定本身並無不妥,而應強調各國稅捐機關之租稅資訊之合作。愛爾蘭已與捷克共和國、芬蘭、瑞典發表反對聲明,表示數位經濟課稅的方案不應背離BEPS行動計畫之期中報告,並應考慮到國際間因租稅引起的貿易戰爭,以及避免對數位經濟的扼殺。對此,歐盟監管審查委員會(Regulatory scrutiny Board)亦認為,草案並未針對數位稅的有效稅率進行量化分析,嚴重忽略了數位稅對於區域內經濟的衝擊。 由於未能獲得歐盟會員國的共識,法國為了回應黃背心運動(Mouvement des gilets jaunes)的要求, 12月17日法國財政部長已公開表示2019年3月前,將自行針對數位廣告所得與數位資料所得稅收法案送交國內立法程序,該法案將直接以境內網路社群利潤推估大型數位企業之應稅所得,並支持「顯著數位化存在」的認定原則。同時奧地利財政部長也表示,會跟進數位稅收的立法並於2019年1月底公布稅收草案。
歐美擴大永續報告書的揭露範圍,企業可透過歷程管理增進資料透明度根據美國瑞生國際律師事務所(Latham & Watkins)於2024年1月發布的ESG年度報告指出,隨漂綠議題延燒,ESG報告不受信任為一課題,因此國際逐步擴大ESG監管,多國透過立法強制企業應揭露永續報告書或供應鏈資訊,比如:歐盟於2023年1月生效之《企業永續報告指令》(Corporate Sustainability Reporting Directive, CSRD),要求企業揭露的永續資訊需增加供應鏈資訊的透明度;美國證券交易委員會(SEC)於2024年3月6日通過規則,要求上市公司及公開發行公司揭露碳排放報告等氣候風險相關資訊。 為因應ESG帶來的挑戰,報告建議企業應採取流程化管理方式,了解產品進出口涉及的其他國家對ESG揭露資訊的要求,加以規劃並建置資料控管規範、進行人員教育訓練以及確認ESG相關資料的所有權歸屬。 由於碳排放量的計算沒有一致標準,且難以確保供應鏈上下游所提供的碳排資訊真實、未經竄改等問題,外界不容易信任企業永續發展書提倡的供應鏈減碳策略。國內企業可參考資策會科法所創意智財中心發布的《重要數位資料治理暨管理制度規範(EDGS)》,透過流程化管理,從制度規劃及留存供應鏈二氧化碳排放量或二氧化碳減量等產品相關資料歷程來增進ESG資料透明度。 本文同步刊登於TIPS網(https://www.tips.org.tw)
日本政府怎樣對公部門管制DeepSeek?日本政府怎樣對公部門管制DeepSeek? 資訊工業策進會科技法律研究所 2025年07月07日 2025年2月3日,日本個人情報保護委員會(Personal Information Protection Commission,簡稱PPC)發布新聞稿指出[1],DeepSeek所蒐集的資料,將會儲存在中國的伺服器裡,且為中國《國家情報法》的適用對象[2]。這可能將導致個人資料遭到中國政府調用或未經授權的存取。作為中國開發的生成式AI,DeepSeek雖以優異的文本能力迅速崛起,卻也引發資安疑慮。 身處地緣政治敏感區的日本對此高度警覺,成為率先提出警告的國家之一。台灣與日本面臨相似風險,因此日本的應對措施值得借鏡。本文將從PPC新聞稿出發,探討日本如何規範公部門使用DeepSeek。 壹、事件摘要 DeepSeek作為中國快速崛起之生成式AI服務,其使用範圍已快速在全球蔓延。然而,日本PPC發現該公司所公布之隱私政策,內容說明其所蒐集之資料將存儲於中國伺服器內,並依據中國《國家情報法》之適用範圍可能遭到中國政府調用或未經授權之存取。 日本PPC因而於2025年2月3日發布新聞稿,隨後日本數位廳於2月6日發函給各中央省廳,強調在尚未完成風險評估與資安審查之前,政府機關不應以任何形式將敏感資訊輸入DeepSeek,並建議所有業務使用應先諮詢內閣資安中心(内閣サイバーセキュリティセンター,NISC)與數位廳(デジタル庁)意見,才能判定可否導入該類工具[3]。數位大臣平將明亦在記者會中強調:「即使不是處理非機密資料,各機關也應充分考量風險,判斷是否可以使用。」(要機密情報を扱わない場合も、各省庁等でリスクを十分踏まえ、利用の可否を判断する)[4]。 本次事件成為日本對於生成式AI工具採取行政限制措施的首次案例,也引發公私部門對資料主權與跨境平台風險的新一輪討論。 貳、重點說明 一、日本對於人工智慧的治理模式 日本在人工智慧治理方面採取的是所謂的「軟法」(soft law)策略,也就是不依賴單一、強制性的法律來規範,而是以彈性、分散的方式,根據AI的實際應用場景與潛在風險,由相關機關分別負責,或透過部門之間協作因應。因此,針對DeepSeek的管理行動也不是由某一個政府部門單獨推動,而是透過跨部會協作完成的綜合性管控,例如: (一)PPC的警示性通知:PPC公開說明DeepSeek儲存架構與中國法規交錯風險,提醒政府機關與公務人員謹慎使用,避免洩漏資料。 (二)數位廳的行政指引:2025年2月6日,日本數位廳針對生成式AI的業務應用發布通知,明列三項原則:禁止涉密資料輸入、限制使用未明確審查之外部生成工具、導入前應諮詢資安機構。 (三)政策溝通與政治聲明:平將明大臣在記者會上多次強調DeepSeek雖未明列於法條中禁用,但其高風險屬性應視同「潛在危害工具」,需列入高敏感度審查項目。 二、日本的漸進式預防原則 對於DeepSeek的管制措施並未升高至法律層級,日本政府亦沒有一概禁止DeepSeek的使用,而是交由各機關獨自判斷[5]。這反映出了日本在AI治理上的「漸進式預防原則」:先以行政指引建構紅線,再視實際風險與民間回饋考慮是否立法禁用。這樣的作法既保留彈性,又讓官僚系統有所依循,避免「先開放、後收緊」所帶來的信任危機。 三、日本跟循國際趨勢 隨著生成式AI技術迅速普及,其影響已不再侷限於產業應用與商業創新,而是逐漸牽動國家資安、個資保護以及國際政治秩序。特別是生成式AI在資料存取、模型訓練來源及跨境資料流通上的高度不透明,使其成為國家安全與數位主權的新興挑戰。在這樣的背景下,各國對生成式AI工具的風險管理,也從原先聚焦於產業自律與技術規範,提升至涉及國安與外交戰略層面。 日本所採取的標準與國際趨勢相仿。例如韓國行政安全部與教育部也在同時宣布限制DeepSeek使用,歐盟、美國、澳洲等國亦有不同程度的封鎖、審查或政策勸導。日本雖然和美國皆採取「軟法」(soft law)的治理策略,然而,相較於美國以技術封鎖為主,日本因其地緣政治的考量,對於中國的生成式AI採取明確防範的態度,這一點與韓國近期禁止政府機構與學校使用中國AI工具、澳洲政府全面禁止政府設備安裝特定中國應用程式類似。 參、事件評析 這次日本政府對於DeepSeek的應對措施,反映出科技治理中的「資料主權問題」(data sovereignty):即一個國家是否有能力控制、保存與使用其管轄範圍內所生產的資料。尤其在跨境資料傳輸的背景下,一個國家是否能保障其資料不被外國企業或政府擅自使用、存取或監控,是資料主權的核心問題。 生成式AI不同於傳統AI,其運作依賴大規模訓練資料與即時伺服器連接,因此資料在輸入的瞬間可能已被收錄、轉存甚至交付第三方。日本因而對生成式AI建立「安全門檻」,要求跨境工具若未經審核,即不得進入政府資料處理流程。這樣的應對策略預示了未來國際數位政治的發展趨勢:生成式AI不只是科技商品,它已成為跨國治理與地緣競爭的核心工具。 中國通過的《國家情報法》賦予政府調閱私人企業資料的權力,使得中國境內所開發的生成式AI,儼然成為一種資訊戰略利器。若中國政府藉由DeepSeek滲透他國公部門,這將對國家安全構成潛在威脅。在此背景下,日本對公部門使用DeepSeek的管制,可被解讀為一種「數位防衛行為」,象徵著日本在數位主權議題上的前哨部署。 值得注意的是,日本在處理DeepSeek事件時,採取了「不立法限制、但公開警示」的方式來應對科技風險。此舉既避免激烈封鎖引發爭議,又對於資料的運用設下邊界。由於法令規範之制定曠日費時,為避免立法前可能產生之風險,日本先以軟性之限制與推廣手段以防止危害擴大。 台灣雖與日本同處地緣政治的敏感地帶,資料主權議題對社會影響深遠,為使我國可在尚未有立法規範之狀態下,參考日本所採之行政命令內控與公開說明外宣雙向並行之策略,對台灣或許是一種可行的借鏡模式。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]個人情報保護委員会,DeepSeekに関する情報提供,https://www.ppc.go.jp/news/careful_information/250203_alert_deepseek/ (最後瀏覽日:2025/05/06)。 [2]《中华人民共和国国家情报法》第7条第1项:「任何组织和公民都应当依法支持、协助和配合国家情报工作,保守所知悉的国家情报工作秘密。」 [3]デジタル社会推進会議幹事会事務局,DeepSeek等の生成AIの業務利用に関する注意喚起(事務連絡),https://www.digital.go.jp/assets/contents/node/basic_page/field_ref_resources/d2a5bbd2-ae8f-450c-adaa-33979181d26a/e7bfeba7/20250206_councils_social-promotion-executive_outline_01.pdf (最後瀏覽日:2025/05/06)。 [4]デジタル庁,平大臣記者会見(令和7年2月7日),https://www.digital.go.jp/speech/minister-250207-01 (最後瀏覽日:2025/05/06)。 [5]Plus Web3 media,日本政府、ディープシークを一律禁止せず 「各機関が可否を判断する」,https://plus-web3.com/media/500ds/?utm_source=chatgpt.com (最後瀏覽日:2025/05/06)。