本文為「經濟部產業技術司科技專案成果」
歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
美國著作權局發布「具AI產出之著作註冊指引」,關鍵在人類智慧貢獻程度美國著作權局(US Copyright Office,USCO)於2023年3月16日頒布「具AI產出之著作註冊指引」(Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence),本指引之發布係由於近年美國著作權局時常收到人工智慧著作之註冊申請案,對於此類著作是否可以成功註冊,過去未有較明確之判斷準則,如此恐造成美國著作權體制之紊亂,著作權局遂發布本指引,以作為民眾申請註冊之著作包含利用AI創作內容時之指導依據。 本指引首先認定「著作人」之概念須為人類,此部分與美國憲法、美國著作權法及美國最高法院判例見解相同。 接著,本指引並描述到欲申請之著作,除前開之著作人須為人類外,人類須於該著作中傳達其原始精神理念(own original mental conception),不得為單純之透過機械運作所產生。惟此並非代表人類完全不得運用AI輔助創作,係取決於人類對該創作之創造性控制程度及該創作實際形成(Actually Formed)作者之傳統元素含量。 最後,本指引提出申請人於提出具AI產出著作時應提交之表格為標準表格(Standard Application),在創作者欄位中具體闡述人類作為作者之具體貢獻身份,且不能將AI列為作者或共同作者。至於在本指引發布前已提出之申請案,該指引提到申請人可以透過補充說明之方式,通知著作權局其著作中涉及AI產出部分,並就該部分聲明不專用,以符合新指引所要求之「揭露」。 綜觀以言,可以認定本指引之提出可作為著作人申請註冊時之遵循依據,初步解決過去未有AI著作申請註冊參考依據之弊病,然尚有許多細節待補充,且甚仰賴個案之判斷,惟本文認為未來隨AI科技之發展及廣泛利用,關「人類智慧」於著作貢獻程度更明確、更為具體之判斷標準勢必將應運而生,值得持續關注。
智慧財產權管理標準之建立-由管理系統標準談起(上) 英國與新加坡監管沙盒機制概述