本文為「經濟部產業技術司科技專案成果」
2021年4月26日,歐盟商標協會(European Communities Trade Mark Association,以下簡稱ECTA)針對3D列印設計保護修法方向,向歐盟提交一份立場意見書(position paper)。歐盟自1998年發布《設計指令》(Directive 98/71/EC on the legal protection of designs)及2002年發布《設計規則》(Council Regulation(EC) No 6/2002 on Community designs)以來,已多年未進行修正;為了能對設計提供更有效的法律保護,歐盟從2018年起開始進行修法的公眾諮詢,並於2020年11月提出修法評估報告。 ECTA一直以來都很關注3D列印技術發展涉及的智慧財產議題,在意見書中列出了修法時應納入評估的重點。例如ECTA指出,雖然3D列印所使用的CAD模型檔案僅是列印過程中的媒介,檔案本身不能受到設計法律的保護,但檔案中包含了設計藍圖及其設計特徵,為了讓以數位形式呈現的設計能受到保護,建議應考慮修改《設計規則》第3條(b)及《設計指令》第1條(b)中對於產品(product)的定義,將CAD模型檔案及其他任何含有以數位形式呈現設計的物件(items)也納入產品的定義之中。 其次,ECTA認為應針對任何明知有侵權事實,但仍提供幫助的行為人課予輔助侵權責任(contributory infringement),以提供設計權人更有效的武器來捍衛自身權利。如行為人未經設計權人同意,自行利用3D儀器掃描物體,根據所得數據製作成CAD模型檔案,並將該CAD模型檔案提供給直接侵權人時,應成立輔助侵權。 最後,ECTA認為目前沒有針對3D列印技術制定專法的必要,僅需要在現行智財法律體系中進行修法調整即可,以避免法律體系過於複雜。
強化驗證技術以遏止網路犯罪美國聯邦政府與企業界正朝向增加驗證技術的使用,以遏止線上詐騙的盛行,所謂「雙重驗證( ”two-factor” Authentication)」機制,為美國聯邦財政機構檢測委員會(Federal Financial Institutions Examination Council, FFIEC )與美國芝加哥直銷協會( The Direct Marketing Association, DMA )推行,主要要求檢查除用戶名稱和密碼以外的東西來確認顧客的身份。 美國聯邦財政機構檢測委員會 —包括聯邦儲備(Federal Reserve)和聯邦存款保險公司(Federal Deposit Insurance Corp.,FDIC)等管理者在內,要求銀行2006年底皆必須加強網上身份驗證措施,如給每個顧客一份加密的憑證,這些憑證會向銀行證明用戶的真實身份。且該加密的憑證不會向發放該憑證的其它網站做出回應,這樣既保護了用戶,也保護了銀行。此外,美國聯邦財政機構檢測委員會審查員亦會定期檢查銀行的執行情況;而以美國芝加哥直銷協會為例,其要求會員於交易時所使用之電子郵件,須取得電子郵件系統的驗證,以確保電子郵件係由該協會成員所發出。 如同美國芝加哥直銷協會執行長 John A. Greco 所言,消費者可藉由此種驗證方式增加更多信心,對於其所取的資訊係來自可靠來源並具有合法性,可使市場減低網路犯罪之產生並對於政府、企業及消費者有更多保障。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。
隱私暨個人資料保護與管理工具介紹(一)-隱私衝擊分析