以法制工具支援文化創意產業之發展與推動-文化創意產業發展法及相關配套子法

刊登期別
第22卷,第04期,2010年04月
 

※ 以法制工具支援文化創意產業之發展與推動-文化創意產業發展法及相關配套子法, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3319&no=55&tp=1 (最後瀏覽日:2026/02/16)
引註此篇文章
你可能還會想看
歐盟議會通過對RoHS指令修正之提案,奈米銀與長型多壁奈米碳管將可能成為禁止之列

  歐盟議會之環境、公共健康暨食品安全委員會(以下簡稱委員會)於6月2日以55票贊成,1票反對,2票棄權,通過對電子電機設備有害物質限用指令(RoHS指令)修訂之提案。該提案要求對包括鹵化阻燃劑(Halogenated Flame Retardants)、聚氯乙烯(PVC)以及奈米銀(nanosilver)、長型多壁奈米碳管(long multi-walled carbon nanotubes,MWCNT)等目前未列於有害物質禁用清單之化學物質,評估是否列入清單。   RoHS指令適用於自其他第三國進口以及於歐盟地區所生產之電子電機設備產品,影響層面廣泛,值得注意的是,該修訂提案中就其適用對象改採「開放性適用」(open scope),亦即除有特別明文排除者外,所有電子電機設備產品皆適用此一指令。歐盟議會目前提議排除用於生產再生能源、特定大規模設備與工業工具以及用於生產軍事目的之物質和車輛之電子電機設備。   針對奈米銀和長型多壁奈米碳管兩項奈米物質,委員會於修訂提案將其增列於附件IV當中,將產生對內含上述二種物質且達可探測程度(detectable level)之電子電機設備禁止進入歐盟市場流通之效果。委員會也對內含奈米物質之電子電機設備要求進行標示,製造商亦應向歐盟執委會提供奈米物質之安全數據。惟有論者表示,在歐洲議會目前對於奈米物質之定義尚未明確之前提下,此修訂提案可能導致必須對所有的電子產品進行奈米標示之情況。

韓國公共行政安全部制定《公部門AI倫理原則》草案,以提升民眾對公部門應用AI之信任

2025年11月,韓國公共行政安全部(Ministry of the Interior and Safety,下稱MOIS)於新聞稿宣布制定《公部門AI倫理原則》草案,追求公益、公平無歧視、透明、問責明確、安全性及隱私保護等六大核心價值,旨於促進創新、提升民眾對公部門應用AI之信任。 一、適用範圍 《公部門AI倫理原則》草案適用對象為公部門,包含中央、地方政府機關等,其性質為不具強制力的指引。 二、檢核表分三階段漸進式管理 《公部門AI倫理原則》草案依AI 應用的複雜程度分為三階段漸進式管理,設計最高達90個細項的檢核表(Checklist),惟目前尚未公開詳細內容: (一)第一階段:基礎導入(AI基礎應用) 針對技術引進的初步活用階段,共包含31個檢核項目,旨在建立基礎的倫理合規防線。 (二)第二階段:進階應用(AI決策支援) 適用於AI提供資料分析與建議以輔助人員進行行政決策的情境。隨著影響力提升,檢核項目擴增至74個,強化透明性與責任性的審查。 (三)第三階段:深度融合(AI自主決策) 針對AI具備高度自主決策權的高風險情境(如自主化服務或複雜判斷),執行最嚴密的倫理檢查,共達90個檢核項目。 建議公部門依檢核表自行檢查,並依結果建立「調整與回饋」的循環機制,以因應不斷變化的技術環境。 MOIS部長指出,未來將進一步蒐集學界意見以完備倫理原則,並開發一套AI倫理原則之培訓課程,確保一線能落實執行這90個檢核項目,保障人權與基本權利。 由於目前未見90個檢核項目內容,值得持續追蹤後續進展。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

日本公布新創事業與廠商合作之指針草案,統整雙方不對等契約關係之問題並提出改善建議

  日本經濟產業省、公平交易委員會及特許廳於2020年12月23日發布「Startup與廠商合作之相關指針」(スタートアップとの事業連携に関する指針)草案,並自同日起至2021年1月25日止向外徵求公眾意見。近年,日本國內一方面看重新創事業與大型企業合作所帶來的優勢;另一方面,在此種合作關係下,雙方的契約關係亦浮現如名為共同研究、卻由大型企業方獨占專利權等問題。基此,配合2020年4月未來投資會議的決議要求,統整新創事業與大型企業間不對等契約關係的問題與提出改善建議,並參考同年11月公平交易委員會所發布的「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),擬定本指針草案。   本指針主要著眼於新創事業與企業間的保密協議(Non-disclosure agreement, NDA)、概念驗證(Proof of Concept, PoC)契約、共同研究契約與授權(license)契約等四種契約類型。除了統整包含訂約階段在內的各種問題實例、以及日本獨占禁止法(私的独占の禁止及び公正取引の確保に関する法律)對此的適用現況外,亦提出了相應的改善與解決方案。舉例而言,指針草案指出,新創事業可能會被合作廠商要求對其公開營業秘密,卻未能簽訂保密協議。對此,合作廠商即可能構成獨占禁止法上濫用其優勢地位之行為。會造成此狀況發生的實務情境,可能為合作廠商承諾事後會簽署保密協議,但要求新創事業先行揭露其程式的原始碼等營業秘密等。而原因則主要包含新創事業缺乏足夠法律素養(literacy)、以及有關開放式創新的相關知識不足等。基此,指針提出改善方案,例如,締約前新創事業即先行區分出可直接向契約他方揭露的營業秘密、得透過締結NDA約定揭露之營業秘密、以及不得揭露之營業秘密等;締結NDA時,應盡可能具體約定營業秘密的使用目的、對象及範圍,並且考量到通常難以舉證廠商違反保密協議,因此不建議揭露攸關新創事業核心能力(core competence)的營業秘密。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP