加拿大決定將網路中立規範適用至行動無線網路

  加拿大廣播電視及電信委員會(Canadian Radio-Television and Telecommunications Commission,CRTC)於2009年10月之Telecom Regulatory Policy CRTC 2009-657中,公佈網路流量管理架構(Internet Traffic Management Pratices,ITMPs)之決定,作為管理ISP業者進行差別待遇之依據。該管理架構是加拿大維護網路中立性原則的實踐。

 

  當時CRTC並未決定該架構是否一併適用於行動無線網路,直至2010年7月CRTC發布Telecom Decision CRTC 2010-445,決定將該規則一併適用於行動無線網路,以解決潛在的差別待遇行為發生於行動無線資料服務。

 

  根據2009年之管理架構,CRTC宣示了四項管理原則:
1.透明度(Transparency)
ISP必須透明揭露他們所使用的ITMPs,使消費者能根據這些資訊決定服務的購買與使用。例如經濟條件的透明,使消費者能夠有符合其支付意願之選擇,使市場機制能夠正常運作。
2.創新(Innovation)
解決網路壅塞最基本的方式是透過對網路之投資,也仍是最主要的解決方案。但依靠投資並不能解決所有的問題,CRTC認為,ISP業者之ITMPs在某些時候,仍需要適當的管理措施介入。業者之ITMPs應針對明確的需求而設計,不可過度。
3.明確(Clarity)
ISP業者必須確保他們所使用的ITMPs不會有不合理的歧視,也不會有不合理的優惠。CRTC所建立之ITMP的管理架構,提供一個清晰和結構化的方法,來評估既有與未來的ITMPs是否符合加拿大電信法(Telecommunications Act)第27(2)條規範。
4.競爭中立(Competitive neutrality)
對於零售服務,CRTC將採取事後管制原則,即接受消費者投訴後處理之原則,進行管制評估。而在批發服務部份,則較為嚴格。亦即,當ISP在批發服務使用了比零售服務較多的限制性ITMPs時,必須得到CRTC之批准。當ISP將ITMPs用於批發服務時,必須遵守CRTC之管理架構,不得對次級ISP(Secondary ISP)的流量造成顯著和不相稱的影響。

 

  值CRTC並將採取行動以確保因實施ITMPs而收集之個人資訊,不被洩漏與使用至其他目的。

 

  在本項決定公佈之後,代表加拿大提供接取網際網路的ISP,無論使用何種技術,都將適用同樣的ITMPs管理原則。在Google-Verizon於美國遊說網路中立性應不適用於行動無線網路之時,CRTC之決定可做為不同方向之參考。

相關連結
※ 加拿大決定將網路中立規範適用至行動無線網路, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=3358&no=55&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
歐洲議會通過《人工智慧法案》朝向全球首部人工智慧監管標準邁進下一步

歐洲議會通過《人工智慧法案》 朝向全球首部人工智慧監管標準邁進下一步 資訊工業策進會科技法律研究所 2023年06月26日 觀察今年的科技盛事屬ChatGPT討論度最高,將人們從區塊鏈、元宇宙中,帶入人工智慧(AI)領域的新發展。ChatGPT於2022年11月由OpenAI開發的生成式人工智慧,透過深度學習模型,理解和生成自然語言,其功能包含回答各類型問題(如科學、歷史)、生成邏輯結構之文章(如翻譯、新聞標題)、圖形、影像等內容。然而對於人工智慧的發展,究竟如何去處理人機間互動關係,對於風險之管理及相關應用之規範又該如何,或許可從歐盟的法制發展看出端倪。 壹、事件摘要 面對人工智慧的發展及應用,歐盟執委會(European Commission)早在2018年6月成立人工智慧高級專家組(AI HLEG),並於隔年(2019)4月提出「可信賴的人工智慧倫理準則」(Ethics Guidelines for Trustworthy AI),要求人工智慧需遵守人類自主、傷害預防、公平、透明公開等倫理原則。於2021年4月21日歐盟執委會提出「人工智慧法律調和規則草案」(Proposal for a Regulation Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts)(以下稱人工智慧法案),於2023年內部市場委員會(Internal Market Committee)與公民自由委員會(Civil Liberties Committee)通過並交由歐洲議會審議(European Parliament),最終《人工智慧法案》於2023年6月14日通過。後續將再歐盟理事會(Council of the European Union)與辯論協商,尋求具共識的最終文本[1]。 貳、重點說明 由於「歐盟議會通過」不等於「法案通過」,實際上歐盟立法機制不同於我國,以下透過法案內容說明的契機,概述一般情況下歐盟之立法流程: 一、歐盟立法過程 通常情況下,法案由歐盟執委會(下簡稱執委會)提出,送交歐盟理事會及歐洲議會,作為歐盟的「立法者」歐洲理事會(下簡稱理事會)與歐洲議會(下簡稱議會)將針對法案獨立討論並取得各自機關內之共識。大致上立法程序有可分為三階段,在一讀階段若理事會與議會對於執委會版本無修改且通過,則法案通過,若任一機關修改,則會進行到二讀階段。針對法案二讀若仍無法取得共識,則可召開調解委員會(Conciliation)協商,取得共識後進入三讀。簡單來說,法案是否能通過,取決於理事會與議會是否取得共識,並於各自機關內表決通過[2]。 目前《人工智慧法案》仍處於一讀階段,由於法案具備爭議性且人工智慧發展所因應而生之爭議迫在眉睫,議會通過後將與執委會、理事會進入「三方會談」(Trilogue)的非正式會議,期望針對法案內容取得共識。 二、人工智慧法案 (一)規範客體 《人工智慧法案》依風險及危害性程度分級,其中「不可接受風險」因抵觸歐盟基本價值原則禁止(符合公益目標,如重大或特定犯罪調查、防止人身安全遭受危害等例外許可)。「高風險」則為法案規範之重點,除針對系統技術穩健、資料處理及保存訂有規範外,針對人為介入、安全性等也訂定標準。 而針對高風險之範疇,此次議會決議即擴大其適用範圍,將涉及兒童認知、情緒等教育及深度偽造技術(Deepfake)納入高風險系統,並強調應遵循歐盟個人資料保護規範。此外對於社會具有高影響力之系統或社群平臺(法案以4500萬用戶做為判斷基準),由執委會評估是否列為高風險系統。針對目前討論度高的生成式人工智慧(ChatGPT),議會針對法案增訂其系統於訓練及應用目的上,應揭露其為生成式人工智慧所產出之內容或結果,並摘要說明所涉及之智慧財產權[3]。 (二)禁止項目 關於《人工智慧法案》對於高風險系統之要求,從執委會及理事會的觀點來看,原則上重點在於對弱勢的保護及生物資料辨識之權限。歐盟禁止人工智慧系統影響身理及心理,包含對於特定族群如孩童、身心障礙者等弱勢族群之不平等待遇。同時原則禁止即時遠端的生物辨識利用,包含對於人性分析、動作預測等對於人類評價、分類之應用,例外情況如犯罪調查、協尋失蹤兒童、預防恐怖攻擊、關鍵基礎設施破壞等情況時方被允許。此次議會決議提高禁止即時遠端生物辨識的標準,包含納入敏感資訊的蒐集如性別、種族、政治傾向等,及其他臉部辨識、執法、邊境管制、情緒辨識等項目[4]。 參、事件評析 有關《人工智慧法案》雖歐洲議會已一讀通過,然而後續仍要面對與歐盟理事會的協商討論,並取得共識才能規範整個歐盟市場。因此上述規範仍有變數,但仍可推敲出歐盟對於人工智慧(含生成式)的應用規範態度。在面對日新月異的新興科技發展,其立法管制措施也將隨著橫向發展,納入更多種面向並預測其走向趨勢。因人工智慧有應用多元無法一概而論及管制阻礙創新等疑慮,觀察目前國際上仍以政策或指引等文件,宣示人工智慧應用倫理原則或其風險之管理,偏重產業推動與自律。 觀察歐盟《人工智慧法案》之監管目的,似期望透過其市場規模影響國際間對於人工智慧的監管標準。倘若法案後續順利完成協商並取得共識通過,對於如OpenAI等大型人工系統開發商或社群平臺等,若經執委會評估認定為高風險系統,勢必對於未來開發、應用帶來一定衝擊。因此,歐盟對於人工智慧監管的態度及措施實則牽一髮而動全身,仍有持續觀察之必要。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The AI Act, Future of Life Institute, https://artificialintelligenceact.eu/developments/ (last visited Jun. 20, 2023) [2]The ordinary legislative procedure, Council of European Union, https://www.consilium.europa.eu/en/council-eu/decision-making/ordinary-legislative-procedure/ (last visited Jun. 19, 2023) [3]EU AI Act: first regulation on artificial intelligence, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/headlines/society/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence (last visited Jun. 21, 2023) [4]MEPs ready to negotiate first-ever rules for safe and transparent AI, European Parliament, Jun. 14, 2023, https://www.europarl.europa.eu/news/en/press-room/20230609IPR96212/meps-ready-to-negotiate-first-ever-rules-for-safe-and-transparent-ai(last visited Jun. 21, 2023)

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

美國白宮發布「美國就業計畫」說明文件,加強投資基礎建設與科技研發

  美國白宮於2021年3月31日發布「美國就業計畫」說明文件(FACT SHEET: The American Jobs Plan),針對美國當前所面臨基礎建設老舊、失業率攀升、氣候變遷與來自中國的技術競爭等問題,預計在未來八年內每年投資約GDP的1%,共投入約2兆美元(約合新台幣56兆元)於修復與升級國家基礎建設、振興製造業、投資基礎科學研究、支持供應鏈、推動能源轉型、幼兒教育及長照醫療等項目上。   本說明文件指出,雖然美國為世界上最富裕的國家,但許多基礎建設都逐漸變得老舊或不合時宜,部份人民仍無法享有高速網路與價格可負擔的房屋,而在疫情的衝擊下不僅導致工作機會喪失,更威脅到國家經濟安全。除此之外,美國在科技研發、製造與人才培育上開始落後於最大的競爭對手,顯示政府有必要加快在基礎建設與科技研發的投資,以重建美國的國家競爭力並創造更多的就業機會。   針對投資基礎建設部分,包含交通基礎建設如修復高速公路、橋樑,並升級港口、機場及運輸系統,並改善飲水、電力與網路布建,提供全體人民可負擔、可靠的高速寬頻服務;除了提高基礎建設在面對氣候變遷危機時的韌性,也提供美國人民更安全、可靠、便利的生活條件。在更新基礎建設的同時,將採用符合永續性及創新性的建築材料,並優先使用在美國製造與販售的零組件,以支持國內產業與創造就業機會。   而在投資科技研發部分,相對於中國大陸正大力投資於研發,其研發支出為世界第二,美國在投資科技研發占GDP比率卻持續下降,為了支持研發團隊克服高度創新(high-innovation)技術的障礙,有必要提高對於國內研究人員、實驗室及大學院校的投資。因此白宮呼籲國會支持國家科學基金會(NSF)投資500億美元設立技術局(technology directorate),用於整合國家研究資源,投入半導體及高級通訊技術、高級能源技術及生物技術的研發,並預計投資400億美元於全國實驗室研究設施與網路的升級。   除此之外,白宮規劃投資350億美元於研發克服氣候變遷危機的技術解決方案,包括開發減少排放和建立氣候適應力的新方法,並呼籲國會投資100億美元於傳統黑人大學(HBCUs)、弱勢族群教育機構(MSIs)的科技研發以避免種族與性別落差,投資200億美元於區域創新中心及社區再生基金,向國家標準技術協會(NIST)投資140億美元推動產官學合作研發,以及規劃310億美元用於中小企業信貸、創投及研發資金,特別是地區型的小型孵化器及創新聚落,以支持有色人種及弱勢族群的新創事業成長。

瑞士洛桑管理學院公布《2025年IMD世界競爭力年報》

瑞士洛桑管理學院(International Institute for Management Development, IMD)於2025年6月17日發布《2025年IMD世界競爭力年報》(IMD World Competitiveness Yearbook),針對全球69個國家與地區,從「經濟表現」、「政府效能」、「企業效能」及「基礎建設」四大面向進行綜合評比,瑞士、新加坡與香港分列前三,展現其制度穩定性與政策應變能力的優勢。 排名第一的瑞士,擁有強健的制度架構,且其「政府效能」與「基礎建設」表現卓越,然瑞士在「經濟表現」與「企業效能」表現略有下滑,主要與公共採購制度的透明度相關,當地企業反映,公共部門合約對外國投標者開放程度不足,限制市場競爭並影響外資參與。 新加坡「經濟表現」亮眼,使其整體競爭力維持在第二名,然因企業外移嚴重,其「企業效能」由去年的第二名滑落至第八,對未來競爭力構成威脅。 香港由第五名升至第三,四大面向皆有明顯進展,顯示其持續改善投資環境;且香港在企業效能方面表現出色,有效強化其作為全球金融中心的地位。 我國排名第六,較去年上升兩名,展現整體競爭力持續提升。四大面向表現均衡,尤以「經濟表現」與「企業效能」成績亮眼,顯示我國出口動能穩定,企業具備良好轉型能力與國際競爭力,科技產業持續發揮關鍵影響力。「政府效能」維持穩定,財政與稅制制度具備競爭優勢,對營商環境有正面助益。惟在「基礎建設」與社會面向方面,仍面臨人口結構變遷、能源轉型與永續發展等挑戰,需持續強化相關制度與政策配套,以確保長期發展動能。 總體而言,競爭力除經濟與治理外,亦受社會及供應鏈變動影響。未來各國應持續強化治理與創新能力;兼顧社會包容性與產業永續發展,以維持長期競爭力。

TOP