加拿大決定將網路中立規範適用至行動無線網路

  加拿大廣播電視及電信委員會(Canadian Radio-Television and Telecommunications Commission,CRTC)於2009年10月之Telecom Regulatory Policy CRTC 2009-657中,公佈網路流量管理架構(Internet Traffic Management Pratices,ITMPs)之決定,作為管理ISP業者進行差別待遇之依據。該管理架構是加拿大維護網路中立性原則的實踐。

 

  當時CRTC並未決定該架構是否一併適用於行動無線網路,直至2010年7月CRTC發布Telecom Decision CRTC 2010-445,決定將該規則一併適用於行動無線網路,以解決潛在的差別待遇行為發生於行動無線資料服務。

 

  根據2009年之管理架構,CRTC宣示了四項管理原則:
1.透明度(Transparency)
ISP必須透明揭露他們所使用的ITMPs,使消費者能根據這些資訊決定服務的購買與使用。例如經濟條件的透明,使消費者能夠有符合其支付意願之選擇,使市場機制能夠正常運作。
2.創新(Innovation)
解決網路壅塞最基本的方式是透過對網路之投資,也仍是最主要的解決方案。但依靠投資並不能解決所有的問題,CRTC認為,ISP業者之ITMPs在某些時候,仍需要適當的管理措施介入。業者之ITMPs應針對明確的需求而設計,不可過度。
3.明確(Clarity)
ISP業者必須確保他們所使用的ITMPs不會有不合理的歧視,也不會有不合理的優惠。CRTC所建立之ITMP的管理架構,提供一個清晰和結構化的方法,來評估既有與未來的ITMPs是否符合加拿大電信法(Telecommunications Act)第27(2)條規範。
4.競爭中立(Competitive neutrality)
對於零售服務,CRTC將採取事後管制原則,即接受消費者投訴後處理之原則,進行管制評估。而在批發服務部份,則較為嚴格。亦即,當ISP在批發服務使用了比零售服務較多的限制性ITMPs時,必須得到CRTC之批准。當ISP將ITMPs用於批發服務時,必須遵守CRTC之管理架構,不得對次級ISP(Secondary ISP)的流量造成顯著和不相稱的影響。

 

  值CRTC並將採取行動以確保因實施ITMPs而收集之個人資訊,不被洩漏與使用至其他目的。

 

  在本項決定公佈之後,代表加拿大提供接取網際網路的ISP,無論使用何種技術,都將適用同樣的ITMPs管理原則。在Google-Verizon於美國遊說網路中立性應不適用於行動無線網路之時,CRTC之決定可做為不同方向之參考。

相關連結
※ 加拿大決定將網路中立規範適用至行動無線網路, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=3358&no=57&tp=1 (最後瀏覽日:2026/01/19)
引註此篇文章
你可能還會想看
運作技術成熟度(Technology Readiness Level)進行技術評估

運作技術成熟度(Technology Readiness Level)進行技術評估 資策會科技法律研究所 法律研究員 羅育如 104年10月22日 壹、前言   為提升我國科技競爭力,於1999年制定科學技術基本法(以下簡稱科技基本法),透過科技基本法的規定,使原本歸屬國有財產之研發成果,得以下放歸屬執行單位所有,使大學對研發成果能有更完善應用之權利。   科技基本法實施之後,各研究單位開始學習國外經驗,積極進行產學合作,將內部之研發成果技術移轉與外部產業。但是,科技基本法實行已15年的今日,各界逐漸發現,政府經費之投入與研發成果產出之經濟效益有相當大的差距。例如科技部102年專題研究計畫補助經費為215億新台幣,但僅創造3.5億新台幣之衍生成果技術移轉權利金[1]。政府經費投入與產出不符預期的議題,牽涉多元層面問題,但是從新設立政府計畫案之目標與KPI,可以發現政府新創設之補助計畫開始以協助技術商業化作為主要目的,例如萌芽計畫、產學計畫等。   技術商業化操作模式會依據技術成熟度不同而有所差異,技術成熟度高的項目,廠商承接後所需要投入的研發成果可能較低,直接協助廠商改善生產流程或是成為產品商品化的機率較高;反之,廠商則需要投入較多的技術研發費用,需要花費較多的人力與資源,技術才有機會商品化。   由此可知,在技術商業化計畫推廣時,技術項目的技術成熟度是一個重要的評估關鍵。本文針對技術成熟度的評估指標詳細說明,以提供執行技術商業化計畫時,評估技術項目之參考。以下會分別說明何謂技術成熟度以及技術成熟度如何運用,最後會有結論與建議。 貳、技術成熟度說明   技術成熟度或稱為技術準備度(Technology Readiness Level;簡稱TRL)是美國太空總署(NASA)使用多年的技術評估方法,後來為美國國防部所用,再廣為國際各政府機構、學研單位、企業機構使用。   TRL是一個系統化的量尺/衡量指標,可以讓不同型態的技術有一致性的衡量標準,描述技術從萌芽狀態到成功應用於某項產品的完整流程[2]。而TRL涵蓋的技術研發流程則包括四個部分:(1)概念發展:新技術或是新概念的基礎研究,涵蓋TRL1~3;(2)原型驗證:特定技術針對一項或是多項潛在應用的技術開發,涵蓋TRL4與5;(3)系統開發:在某一應用尚未成為一整套系統之前的技術開發以及技術驗證,然後進行系統開發,涵蓋TRL6;(4)系統上市並運作[3],涵蓋TRL7~9。以下分別說明TRL每個衡量尺度的定義[4]。 TRL 1 基礎科學研究成果轉譯為應用研究。 TRL 2 為某項特殊技術、某項材料的特性等,找出潛在創新應用;此階段仍然是猜測或推論,並無實驗證據支持。 TRL 3 在適當的應用情境或載具下,實驗分析以驗證該技術或材料相關物理、化學、生物等特性,並證明潛在創新應用的可行性(proof-of-concept)。 TRL 4 接續可行性研究之後,該技術元素應整合成具體元件,並以合適的驗證程序證明能達成原先設定的創新應用目標。 TRL 5 關鍵技術元件與其他支援元件整合為完整的系統/系系統/模組,在模擬或接近真實的場域驗證。需大幅提高技術元件驗證的可信度。 TRL 6 代表性的模型/雛形系統在真實的場域測試。展示可信度的主要階段。 TRL 7 實際系統的雛形品在真實的場域測試。驅使執行TRL7的目的已超越了技術研發,而是為了確認系統工程及研發管理的自信。 TRL 8 實際系統在真實的場域測試,結果符合設定之要求。代表所有技術皆已整合在此實際系統。 TRL 9 實際系統在真實場域達成目標。 參、技術成熟度應用   技術成熟度可以單純拿來衡量技術開發階段、可用來衡量技術開發風險、也可作為研發機構角色以及補助計畫定位的參考,以下說明。 一.技術成熟度用來衡量技術開發階段   這是技術成熟度最單純的應用方法,但因為每種技術領域都可其特殊的技術開發脈絡,所以可以根據NASA原有的技術成熟度,修改成貼近該技術領域需求的技術成熟度指標。目前有看過軟硬體TRL指標、綠能&能源TRL指標、ICT TRL指標、生醫(新藥、生物製劑、醫材)TRL指標等[5]。 二、技術成熟度用來管理技術研發風險   研究開發需投入大量的人力、物力,而研究成果的不確定性又很高,所以需要有良好的技術研發管理。技術成熟度對技術研發管理而言,是風險的概念,一般而言,TRL階段與技術風險是反向關係,也就是說TRL階段越高,技術風險越低[6]。   需要考慮的面向包括[7] ,(1)現在技術成熟度在哪一階段?以及我們投入研發後,希望達到的技術成熟度目標為何?(2)從現在的技術成熟度到專案需要的技術成熟度,要精進這項技術到底有多難?(3)這項特定技術如果開發成功,對於全面技術目標而言的重要性如何? 三、機構角色以及補助計畫定位   TRL指標可用來明確區分研發機構角色定位,例如工研院內部運用TRL指標做為技術判斷量化評估指標,並且工研院需將技術成熟度提升到TRL6或7,以克服技術面的問題,進行小型試量產,才能跨越死亡之谷讓業界接手商業化[8]。   TRL指標也可以用來區分補助計畫的標的範圍,例如美國國防部傾向投資TRL 4階段技術,美國國防部培養TRL4以及4以下的技術到TRL6階段,使得這些技術能更順利的進入技術市場,其原因在於TRL程度越低,成功商品化的不確定性以及風險就越高,而TRL4階段技術項目,是美國國防部可以承受的風險程度[9]。 肆、結論   TRL指標現在已被廣泛的運用在技術評估工作上,透過量化的指標,協助研發人員或是技術管理人員方便掌握每個技術開發案的現況,例如現在技術在TRL哪個階段,技術開發結束後,TRL預計會到達哪個階段。確定目標之後,就可以進一步評估這個計畫開發案的風險並評估組織需投入的資源。   TRL是一個簡易的技術評估指標,但如果要以此做出全面性的技術策略,似乎就還是有所不足,因此,可以再搭配其他技術評估變項,發展為全面性的技術風險管理評估指標,可能可以搭配技術開發困難度指標,用以評估TRL往上提升一級的困難度程度[10],也可以搭配技術需求價值指標[11],這項技術順利成功的話,對整個系統開發而言的價值高低,價值非常高的話,就值得花更多資源與人力去投資。   由此可知,應該可以積極運用TRL指標,用來評估政府技術補助計畫,協助大學技轉辦公室管理各研發團隊之技術開發進程,也可提供技術移轉潛在廠商清楚設定技術規格,減低技術供給方與技術需求方之間的認知差異,進而提升技術移轉成功率,也就可以拉近政府經費投入與研發成果產出的差距。 [1] 行政院國家科學委員會,行政院國家科學委員會102年年報,頁24、98(2013),http://www.most.gov.tw/yearbook/102/bookfile/ch/index.html#98/z,最後瀏覽日2015/07/21。 [2] John C. Mankins, NASA, Technology Readiness Levels: A White Paper (1995). [3] id. [4] US DEPARTMENT OF DEFENSE (DoD), Technology Readiness Assessment (TRA) Guidance (2011), http://www.acq.osd.mil/chieftechnologist/publications/docs/TRA2011.pdf (last visited July 22, 2015). [5] Lewis Chen,<Technology Readiness Level>,工研院網站,http://www.sti.or.th/th/images/stories/files/(3)ITRI_TRL.pdf (最後瀏覽日:2015/07/22)。 [6] Ricardo Valerdi & Ron J. Kohl, An Approach to Technology Risk Management (2004), http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 22, 2015). [7] John C. Mankins, Technology Readiness and Risk Assessments: A New Approach, ACTA ASTRONAUTICA, 65, 1213, 1208-1215 (2009). [8] 邱家瑜、蔡誠中、陳禹傑、高皓禎、洪翊恩,<工研院董事長蔡清彥 以新創事業連結全球市場 開創屬於年輕人的大時代>,台灣玉山科技協會,http://www.mjtaiwan.org.tw/pages/?Ipg=1007&showPg=1325 (最後瀏覽日:2015/07/22)。 [9] Ricardo Valerdi & Ron J. Kohl, Massachusetts Institute of Technology, An Approach to Technology Risk Management, http://web.mit.edu/rvalerdi/www/TRL%20paper%20ESD%20Valerdi%20Kohl.pdf (last visited July 21, 2015). [10] 同註7。 [11] 同註7。

歐美貿易與技術理事會發表第6次聯合聲明,確保雙方於新興技術及數位環境之領導地位

歐美貿易與技術理事會(EU-U.S. Trade and Technology Council,TTC) 2024年4月4日至5日在比利時魯汶舉行第6屆部長會議,依據會後聯合聲明,雙方針對數位轉型所帶來的機遇與挑戰,同意在新興技術和數位環境等面向促進雙邊貿易和投資、進行經濟安全合作,並捍衛人權價值。未來雙方將針對AI、半導體、量子技術和6G無線通訊系統等制定互通機制及標準,簡述如下: (1) AI技術:採取「風險基礎方法」(risk-based approach)實施「可信任人工智慧和風險管理聯合路徑圖(Joint Roadmap for Trustworthy AI and Risk Management),提高透明度以降低公民及社會使用AI的風險;更新關鍵AI術語清單(a list of key AI terms),減少雙方於概念認知上的誤差;承諾建立對話機制,以深化雙邊合作。 (2) 半導體:為促進半導體供應鏈韌性(resilience)與協調(coordination),將延長實施「供應鏈早期預警機制」(joint early warning mechanism)及「透明機制」(transparency mechanism)兩項行政安排,共同解決半導體產業市場扭曲、供應鏈過度依賴特定國家等挑戰。 (3) 量子技術:雙方將成立量子工作小組(Quantum Task Force),以制定統一量子技術標準,加速技術研發。 (4) 6G技術:雙方通過「6G願景」(6G vision),並對於未來研究合作簽署行政安排(administration arrangement),建立6G技術開發共同原則。 歐美雙方期望透過上述作法,促進半導體和關鍵技術研發和供應鏈多元化,以確保經濟安全及落實數位轉型,確保歐美於新興技術和數位環境之領導地位。

歐盟通過經濟安全關鍵技術領域建議,以利會員國進行關鍵技術風險評估

歐盟執委會(European Commission)於2023年10月3日公布「關於歐盟經濟安全關鍵技術領域之建議」(Recommendation on Critical Technology Areas for the EU’s Economic Security),以便與各會員國進行經濟安全關鍵技術之風險評估。該建議源自於歐盟於6月發布之「歐盟經濟安全戰略」(European Economic Security Strategy)目的在於地緣政治緊張之局勢下,將最大限度的減少經濟流動所帶來之風險,為歐盟經濟安全制定全面的戰略方針。此「建議」列出十大關鍵技術領域的清單,係根據以下標準進行風險評估: (1)技術是有促成及轉型之本質(Enabling and Transformative Nature of the Technology)。 (2)民用與軍用融合技術之風險(The Risk of Civil and Military Fusion)。 (3)科技可能被用於侵害人權之風險(The Risk the Technology Could Be Used in Violation of Human rights)。 根據上述標準所列出十個關鍵技術領域後,其中有四個領域項目被認定是最敏感之技術領域,分別有半導體、人工智慧技術、量子技術及生物技術四大類別。 歐盟積極制定此計畫,以確保先進技術不落入敵國手中,減少對於如中國等國家單一供應商之依賴;歐盟預計於今年年底與會員國進行廣泛的風險評估,以確保下一步可能所採取的措施,可能包含出口管制及對外之審查投資,預計於2024年初提案。

日本農業數據利用的瓶頸與農業數據平台WAGRI的誕生

  日本從事農業者高齡少子化以致後繼無人,農業ICT(Information and Communication Technology)可使資深農民內隱知識外顯化而利於經驗傳承,例如已有地區透過除草機器人、自動運行農機等ICT農機,蒐集稻米收穫質量之數據進行分析,實作出施肥最適條件的成功案例。   然而成功案例之數據利用,延伸至其他地區實踐時卻顯得窒礙難行。首先是成本面,農場計測溫溼度等數據之感測器的設置、管理維護與通信等成本負擔,宛如藏寶洞前豎立之石門,不得其門而入。另一造門磚是農機或感測器等不同業者之系統服務互不相容,且數據無法互換共用,為求最適合特定地區與農作物之農業ICT組合,且能移植成功案例至其他地區,系統相容數據共用亦是當務之急。   日本農業數據協作平台(簡稱WAGRI),可為大喊芝麻開門之鑰,日本於2017年內閣府計畫支持下,由農業生產法人、農機製造商、ICT供應商、大學與研究機關等組成聯盟,一同建置具備「合作」(打破系統隔閡使數據得以相容互換)、「共有」(數據由提供者選定分享方式)、「提供」(由公私部門提供土壤、氣象等數據)三大功能之WAGRI,今年已有實作案例指出,活用WAGRI後,在數據蒐集與利用上的勞力與時間成本明顯縮減。   台灣農業同樣面臨高齡化、傳承之困境,日本WAGRI整合與共享數據的模式可作為我國發展農業ICT活用數據之參考。

TOP