美國擬制訂私人通聯記錄保護法案

  美國國會能源及商業委員會( Energy and Commerce Committee )於 2006 3 8 透過匿名表決的方式,通過「防止詐欺取得通聯記錄法」草案( Prevention of Fraudulent Access to Phone Records Act ),希望透過立法的方式保障消費者之隱私權,並要求電信公司加強保護消費者之通聯記錄。由於各黨派對本法案已有共識,故預計於近期排入國會議程後,順利完成立法。


  根據美國國會議員
Joe Barton 表示,美國目前對於電話通聯記錄的取得並未進行規範,任何人均可輕易的透過網路購得相關資料。由於通聯記錄中往往包含許多個人之隱私或是敏感性資料,部分不肖之徒(如身份竊盜者、非法的個人資料販賣商)會藉此故意取得個人通聯記錄,以窺探隱私,甚或以此進行犯罪行為。


  有鑑於此,美國計畫透過本法案,嚴格禁止以詐騙方式取得電話記錄的情形,並賦予聯邦公平交易委員會(
Federal Trade Commission )有權對違反本法規定者進行民事處罰。此外,本法案亦要求電信業者必須符合本法規定之資料安全保護的要求,若違反本法之規定而造成損害,單一案件得處以最高 30 萬元之罰鍰,若為多重案件,則得處以 10 萬元以上 300 萬元以下之罰鍰。

相關連結
※ 美國擬制訂私人通聯記錄保護法案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=396&no=66&tp=1 (最後瀏覽日:2026/01/17)
引註此篇文章
你可能還會想看
美國對法國數位服務稅採取301條款貿易報復

  美國貿易代表署(Office of the United States Trade Representative, USTR)於2020年7月10日針對法國數位服務稅(Digital Services Tax)首度採取「301條款」貿易報復。《1974年貿易法》第301條授權美國政府在對外之國際貿易協定未獲執行,或貿易夥伴採取不公平貿易行為時,進行調查及後續的貿易報復。法國作為全球第一個課徵數位服務稅的國家,法國國民議會於2019年7月11日通過數位服務稅,美國隨即於2019年7月16日開啟「301條款調查」並召開公聽會。美國貿易代表署於2019年12月6日發布調查報告(Report on France’s Digital Services Tax)指出法國數位服務稅是針對美國不合理或歧視性的貿易帳礙。美國總統川普和法國總理馬克宏於2020年1月23日達成暫緩數位服務稅課徵之共識,然而法國在6月再度實施數位服務稅。美國遂對法國啟動「301條款」貿易報復,貿易報復項目係法國進口美國的化妝品、手提包等貨品課徵25%的稅,受波及的貨品粗估高達13億美元。儘管美國企圖透過貿易報復作為警示,許多國家仍持續研擬採取或已經開始課徵數位服務稅。美國貿易代表署指出:「過去兩年,部分國家研擬或已經開始採取數位服務稅,而有相當多的證據可以證明數位服務稅是針對美國大型科技公司。」繼法國之後,美國貿易代表署於2020年6月2日再度開啟「301條款調查」,此次調查對象包括奧地利、巴西、捷克、歐盟、印度、印尼、義大利、西班牙、土耳其和英國等。

數位內容傳輸新服務:推動數位內容產業的另一個面向

伊格奈科技公司(Ignite Technologies Inc.)推出了一款數位內容傳播輔助工具,可幫助企業傳輸大量的數位內容檔案。此項名為伊格奈溝通者(Ignite Communicator)的服務,能協助企業傳輸各種數位內容的檔案,包括視訊、圖形及軟體。此項工具最大的特色,在於能跨越各種不同的作業平台,進行檔案傳輸。   伊格奈此項新服務,能協助企業傳遞資料給遠端行動的使用者,亦可聯結企業夥伴或客戶各種不同層級的網路系統。對於內容豐富而檔案龐大的數位內容傳播而言,此類跨平台的傳播技術與服務,對於 B2B 與 B2C 的數位內容應用,都是一大推動助力。

日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書」

  2017年6月28日日本經濟產業省發佈「第四次產業革命競爭政策研究會報告書-以實現產業整合(Connected Industries)為目標-」。日本政府為能持續推動該國經濟,以建立創新附加價值的產業社會為目標,以實現產業整合並促進創新與競爭環境,於本年度一月至六月召開七次「第四次產業革命競爭政策研究會」,進行日本競爭政策檢討,並於28日發佈第一階段報告書。   本報告中提出四種大數據應用的商業模式,分別為:單獨成長型、附隨應用型、他面活用型與多面展開型四種。單獨成長型著重於產品或服務本身透過資料蒐集應用來改善品質。附隨應用型則除了透過資料搜集以進行產品與服務品質改善以外,亦擴散經驗運用到其他使用者的服務內容改善。他面活用型則透過產品或服務的資料蒐集,運用到其他的領域(例如駕駛資料的蒐集運用到保險費率的計算)。多面展開型則將多種不同的產品與服務的資料取得後綜整分析以能相互提升品質,或應用到新發展的領域。   報告中並提出資料運用對競爭環境影響的三個關鍵步驟。首先是資料本身的影響力,包括資料本身的必要性、資料品質、蒐集成本等。其次為資料蒐集的可能性,因其他競爭者也可能取得相同資料,故應確保資料的稀少性與蒐集能力的差異(與競爭者能區別)。第三是資料運用可能性,應注意資料應用上是否有資金、人才在競爭上的其他限制。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP