在民眾越來越依賴行動裝置的應用程式進行日常活動的年代,諸如通訊、導航、購物、娛樂、健康監測等,往往要求訪問更廣泛的資料和權限,使得應用程式相較於網頁,在資料安全與隱私風險上影響較高。對此,法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)於2024年9月發布針對應用程式隱私保護建議的最終版本,目的為協助專業人士設計符合隱私友好(privacy-friendly)的應用程式。該建議的對象包含行動裝置應用程式發行者(Mobile application publishers)、應用程式開發者(Mobile application developers)、SDK供應商(Software development kit, SDK)、作業系統供應商(Operating system providers)和應用程式商店供應商(Application store providers),亦即所有行動裝置生態系中的利害關係者。以下列出建議中的幾項重要內容: 1. 劃分利害關係者於手機生態系中的角色與責任 該建議明確地將利害關係者間作出責任劃分,並提供如何管理利害關係者間合作的實用建議。 2. 改善資料使用許可權的資訊提供 該建議指出,應確保使用者瞭解應用程式所請求的許可權是運行所必需的,並且對資料使用許可的資訊,應以清晰及易於獲取的方式於適當的時機提供。 3. 確保使用者並非受強迫同意 該建議指出,使用者得拒絕並撤回同意,且拒絕或撤回同意應像給予同意一樣簡單。並再度強調應用程式僅能在取得使用者知情同意後,才能處理非必要資料,例如作為廣告目的利用。 此建議公布後,CNIL將持續透過線上研討會提供業者支援,協助其理解和落實這些建議。同時,CNIL表示預計於2025年春季起,將對市面上應用程式實行特別調查,透過行政執法確保業者遵守相關隱私規範,尤其未來在處理後續任何投訴或展開調查時,會將此建議納入考慮,且會在必要時採取糾正措施,以有效保護應用程式使用者的隱私。 .Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} .Psrc{text-align: center;}
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。
數位歐洲計畫(Digital Europe Programme)數位歐洲計畫(Digital Europe Programme)為歐盟執委會2018年6月提出的策略規畫,已於2019年4月17日由歐洲議會通過;預計2021至2027年間,歐盟將投入92億歐元用於發展高效能運算、人工智慧、網路安全和數位技能培育等領域。數位歐洲計畫目標是確保所有歐洲民眾皆能擁有應對數位挑戰所需的技能、基礎建設及相應的數位監管框架,屬於歐盟發展數位單一市場政策的一部分,預估將創造400萬個就業機會、推動4150億歐元的經濟成長,提升歐盟整體國際競爭力。歐盟為關鍵數位技術提供92億歐元科技預算分配: (1)27億歐元用於高效能運算(預計在2022至2023年建立高效能運算及數據處理能力,2026至2027年將技術導入高階設施設備)。 (2)25億歐元投入人工智慧(支持企業及公部門使用AI、建立安全便利且能儲存大量數據的運算系統、鼓勵會員國相互合作進行AI測試)。 (3)20億歐元用於網路安全技術(採購先進網路安全設備及數位基礎設施、拓展網路安全知識與技能、優化歐盟整體網路安全系統)。 (4)7億歐元投入數位技能培育(加強中小企業短期數位培訓課程、IT專業人員長期訓練、青年企業家培訓)。 (5)13億歐元用於推廣使用數位技術(鼓勵中小企業運用先進數位技術、建構數位創新中心、關注新興技術發展)。
英國「創新持續貸款」英國創新局(Innovate UK)於2020年11月8日公布「創新持續貸款」(Innovation Continuity Loans)申請指南,作為COVID-19疫情應對計畫的工作項目之一,英國創新局將提供2.1億英鎊的貸款予在疫情影響下持續進行創新活動之國內中小企業。本貸款目標對象為因疫情導致出現資金缺口的中小企業,每一間公司將可申請25萬至160萬英鎊不等之創新持續貸款。 「創新持續貸款」源自2017年的創新貸款實驗計畫(Innovation loans pilot),藉由七項創新競賽篩選出約100位申請人,提供總額約7500萬英鎊的創新貸款;此次創新持續貸款則不採競賽方式,而是針對受疫情影響的中小企業創新活動,透過審查機制提供貸款予申請人。申請人資格為正在執行受創新局補助之創新活動者、過去36個月曾受創新局補助而目前正在進行其他創新活動者或是過去36個月並未獲得創新局補助之創新活動的執行、完成或延續性工作者,且確實因COVID-19疫情影響出現資金短缺之中小企業,即可向創新局申請創新持續貸款。 創新局將藉由審查申請者提交至今的工作成果與品質、受疫情影響程度與資金需求情形,評估該創新活動的後續發展潛力,向合格的申請人提供年利息僅3.7%的創新持續貸款。合格的申請人能在2022年3月31日或約定日期前,直到產品首次商業銷售為止,分階段領取貸款,以年利率3.7%計息;產品首次商業銷售後可額外有兩年的寬限期,在產品首次商業銷售或寬限期結束後五年內,申請人必須償還貸款,未償還部分則改採年利率7.4%計息。藉由低利貸款的資金挹注,協助從事新創活動之英國中小企業得以紓困以度過疫情難關。