德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南,旨在提升企業數位化與社會責任,並提升消費者權益保護。 德國司法及消費者保護部次長Gerd Billen於會議中指出,無論技術細節和具體應用如何發展,法律和消費者保護政策應確保人工智慧安全性,且不因此受歧視,以及盡可能確保技術利用透明度。而隨著人工智慧的發展,應設法解決使用人工智慧產生的法律問題。 例如,如何在製造商,供應商和消費者之間公平分配責任歸屬問題?在家庭,物流和手術室等領域已有越來越多具備自我學習的機器人被應用,相關權利是否會有所不同?如果機器出現不明原因故障,會發生什麼情況及如何處置?當機器透過在製造時尚未完全預定的環境感官認知做出具體決定時,該自動行為所生效力為何? 本份指南則提出六項建議: 促進企業內部及外部訂定相關準則 提升產品及服務透明度 使用相關技術應為全體利益著想 決策系統的可靠性仍取決資料的準確性。 重視並解決解決機器偏差問題 在特別需要負責的決策過程,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。
美國國家安全局發布「軟體記憶體安全須知」美國國家安全局(National Security Agency, NSA)於2022年11月10日發布「軟體記憶體安全須知」(“Software Memory Safety” Cybersecurity Information Sheet),說明目前近70%之漏洞係因記憶體安全問題所致,為協助開發者預防記憶體安全問題與提升安全性,NSA提出具體建議如下: 1.使用可保障記憶體安全之程式語言(Memory safe languages):建議使用C#、Go、Java、Ruby、Rust與Swift等可自動管理記憶體之程式語言,以取代C與C++等無法保障記憶體安全之程式語言。 2.進行安全測試強化應用程式安全:建議使用靜態(Static Application Security Testing, SAST)與動態(Dynamic Application Security Testing, DAST)安全測試等多種工具,增加發現記憶體使用與記憶體流失等問題的機會。 3.強化弱點攻擊防護措施(Anti-exploitation features):重視編譯(Compilation)與執行(Execution)之環境,以及利用控制流程防護(Control Flow Guard, CFG)、位址空間組態隨機載入(Address space layout randomization, ASLR)與資料執行防護(Data Execution Prevention, DEP)等措施均有助於降低漏洞被利用的機率。 搭配多種積極措施增加安全性:縱使使用可保障記憶體安全之程式語言,亦無法完全避免風險,因此建議再搭配編譯器選項(Compiler option)、工具分析及作業系統配置等措施增加安全性。
歐盟發佈「降低高速電子通訊網路建置成本」草案 BSI公布個人資料管理系統標準之草案英國國家標準組織(British Standard Institution)於2009年1月8日公布個人資料保護管理系統標準(標準標號為DPC BS 10012)之草案,使組織在個人資料儲存管理工作上符合個人資料保護法(Data Protection Act 1998,DPA)之要求。 有鑑於利用個人資料管理系統(personal information management system,PIMS)管理業務上取得之資料之情形日益增多,而觀諸該資料之性質,通常多為DPA所規範定義的「個人資料」。因此,為使個人資料管理有其標準規範,並得以運用在任何規模之公私部門,使組織內之個人資料管理系統符合DPA之規範且具有一定程度之安全性,BSI試圖提出有關個人資料管理一致性之標準規範,以供組織在個人資料處理程序工作上之遵循。該標準規範如同BS EN ISO 9001:2000之品質管理系統(Quality Management System)及BS ISO/EC 27001:2005之資訊安全管理系統標準,以PDCA週期(Plan-Do-Check-Act)進行規劃,並透過執行所規範之流程落實個人資料之保護。 目前該草案已經公布,BSI於2009年3月31日前將接受各界對於該草案之諮詢及舉辦公聽會,以求標準規範之完善。