代理孕母將合法化

  經過 10 多年的爭議,國內第一部「代孕人工生殖法」草案終將出爐。未來代理孕母將採無償精神,代孕者須年滿 20 歲且須有生產經驗,但是沒有國籍的限制。


  根據草案內容,未來代孕制度將採無償精神,雖不得有商業仲介行為,但委託夫妻得提供代理孕母醫療、交通和營養費等費用,
甚至包括分娩後的醫療檢查、工作損失、交通費用等 草案中對於委託夫婦的條件放寬,不只限於沒有子宮之婦女,在精、卵自備的前提下,只要夫婦懷孕可能危及生命,就適用此法案, 得尋求人工生殖手術之婦女 包括沒有子宮、有懷孕障礙或分娩有危險等婦女。在親子關係認定方面,目前備有出生後收養制以及直接認定為委託夫妻婚生子女等二種方案。此外,代理孕母在生產後 2 年內,得保有探望代孕子女之權利。至於代理孕母之資格,僅要求須年滿 20 歲且有懷孕經驗,而無國籍限制。


  未來代理孕母將有法可循,造福不孕婦女,但是在親子關係認定問題上,似仍需要更嚴謹的討論,避免衍生更多糾紛。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 代理孕母將合法化, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=408&no=57&tp=1 (最後瀏覽日:2026/01/02)
引註此篇文章
你可能還會想看
發展再生能源 農委會推展生質能源作物

  管制全球溫室氣體排放量的京都議定書生效,發展再生能源成為趨勢。行政院農業委員會投入生質能源作物開發,規劃利用北、中、南三地共九十公頃的休耕農田,種植向日葵、大豆及油菜等三種油料能源作物,研發生質柴油,期盼提高農業「綠色產值」。   農委會指出,農業部門在再生能源領域中也有發揮空間,國內外生質能源相關研究認為可利用植物將太陽能、水力及二氧化碳轉化為生質能源,台灣每年有不少農地休耕,可利用推展能源作物,發展生質能源,同時提升休耕農田的附加價值,開創台灣農業發展新契機。   農委會官員指出,研究發現這些作物製成的生質柴油使用於汽車與一般柴油相同,而且排放的廢氣、二氧化碳較少,不過,生質油成本較柴油高,相關技術尚待進一步研究。

亞利桑那州可望通過情色報復法,美國防治情色報復將再添一州

  美國亞利桑那州曾於2014年通過違反本人意願散布隱私內容之條文(泛稱為情色報復法Revenge Porn Law),構成要件未涵蓋行為人需有傷害的主觀不法構成要件,只要未經本人同意散布隱私內容即有可能觸犯本法而被判重罪(Felony),最高將可處三年又九個月之有期徒刑。然而,因構成要件過於廣泛,甚至未排除具新聞、藝術、教育價值之內容,未考慮本人之隱私期待性和傷害有無,美國公民自由聯盟遂代表出版業、媒體業和攝影業等,以該條文侵害言論自由有違憲之虞,於同年9月向亞利桑那州提告。該案於2015年7月10日達成和解,亞利桑那州地方法院宣告該條文將不會生效施行。   在經過漫長的修法後,亞利桑那州參議院最終於2016年3月7日無異議通過情色報復法之最新修法法案(House Bill 2001),待州長簽署核准後便立即生效施行。本次修法與2014年的版本不同處為,檢察官需證明隱私內容之本人具有合理的隱私期待,若被害人曾將自拍的影像寄送與他人,更需證明被害人未有分享的意思。此外,檢察官需證明行為人具有意圖傷害、騷擾、威脅或迫使他人之主觀意思。在此條文尚未通過前,實務上已有檢察官多次反應現行法無從對違反本人意願散布隱私內容之行為論罪,至多僅能以網路跟蹤或霸凌法等追究,對受害人保護甚為不周。

英國發布出口軍用與軍民兩用技術定義與範圍之指南

  英國國際貿易部(Department for International Trade, DIT)於2021年3月22日發布《出口軍用與軍民兩用技術定義與範圍之指南》(Exporting military or dual-use technology Guidance: definitions and scope),以協助使用者定義「技術」與「轉讓軍用或軍民兩用技術的法規範圍」。指南中說明,出口管制目的旨在防止出口技術及技轉可能導致開發或製造武器而危及國家安全,而非禁止合法貿易或知識傳播。任何管制技術的永久或暫時性出口或技轉(Technology transfer)均應取得出口許可證,包括展演、海外招標或投標、履約等行為。   首先在適用主體上,指南說明適用出口管制規範,為所有在英國國境內之人(不論國籍)和組織以及特定情況下的海外英國人,向外國人或海外地區為出口、技轉、或是使海外人員取得受管制技術之情況。   指南中所謂技術者,包含《英國戰略出口管制清單》(UK Strategic Export Control Lists)、《2008年出口管制命令》(The Export Control Order 2008)與歐盟理事會第428/2009號規則(Council Regulation No 428/2009)之內容。有些管制技術會以不同形式呈現,例如藍圖、計畫、模型、程式、指導手冊等,其呈現的形式亦屬管制範圍。此外,部分技術若與大規模破壞武器(Weapon of Mass Destruction, WMD)、武器貿易禁令(arms embargoes)以及未經授權的軍事出口有關者,亦可能屬於受管制之技術,因此定義上十分廣泛。因應科技和網路發展,出口和技轉亦會以不同方式呈現。指南中說明,技轉包含(1)以有形的物理文件或存載於媒體的方式技轉,例如隨身碟、硬碟、筆電或平板等;(2)以電子式等無形形式技轉,例如電子郵件傳送等。無論受管制技術之技轉是否加密,均需取得出口許可證。   針對前述定義之出口和技轉方式,指南中也例示技術移轉或出口的不同態樣,例如(1)電話會議及視訊會議;(2)電子郵件;(3)筆電、手機等可記憶之設備;(4)跨國公司內部傳送;(5)雲端儲存;(6)在國外下載使用管制技術;(7)員工在海外使用/存取內部網路;(8)第三方在海外使用/存取公司內部網路或雲端服務;(9)IT系統維護與測試。以上方式均應個別判斷是否需要申請出口許可證。此外,技術所有者應主導出口管制規範之法遵,故應了解客戶、供應商、分包商等第三方服務業者之詳細資訊,且於契約中明訂各方的出口管制責任及相關條款,並隨時確認接受者或第三方是否得自不同管道取得管制技術及相關訊息,並於可能出口和或技轉管制技術時,立即申請出口許可證。

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP