建立基因資料庫 台灣可行

  賽雷拉( Cel-era)公司創始人溫特克萊首度來台,他是四年前完成人類基因體解碼的靈魂人物,他建議可運用基因解碼技術,建立基因資料庫,解決台灣醫療資源浪費。


  事實上,早在
20042月行政院科技顧問組為追蹤研究國人常見疾病與基因之間的關係,宣布推動「台灣疾病與基因資料庫」建置計畫。希望透過該基因資料庫的建立,確實掌握國人致病基因,奠定基因治療基礎,除了有效節省醫療資源浪費,更可鎖定特有亞洲疾病為研發重心,作為生技產業發展的優勢利基。台灣人口數約有二仟多萬,且具有完整健全的全民健保及戶籍資料,再加上台灣生物科技產業技術的蓬勃發展,想要建立大型的基因資料庫技術性應相當可行。國外有冰島和英國等多國發展之經驗可參考。


  由於涉及人權自主、個人隱私、安全保密、社會倫理、研究成果的利益分享、以及由誰來擔任執行單位等方面的爭議,加上目前國內法令規範不足,既有相關法令多為位階較低的指導性公告,確實有必要建置相關配套制度及法律,以協助該計劃落實執行與發展。

相關連結
※ 建立基因資料庫 台灣可行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=420&no=66&tp=1 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

日本監理沙盒制度推動趨勢—簡介生產性向上特別措施法草案與產業競爭力強化法修法內容

  我國自2017年12月通過《金融科技發展與創新實驗條例》建立金融監理沙盒制度後,各界時有呼籲其他非金融領域亦有沙盒制度之需要。觀察國際上目前於金融產業以外採取類似沙盒制度之國家,當以日本為代表,且日本相關制度亦為我國《中小企業發展條例》修法時之參考對象。   本文針對日本近期提出之《生產性向上特別措施法》(草案)以及日本《產業競爭力強化法》新近之修法等兩項日本近來有關沙盒制度之修法為觀察對象,針對其整體立(修)法背景、《產業競爭力強化法》中灰色地帶解消制度及企業實證特例制度修正重點以及《生產性向上特別措施法》(草案)中「專案型沙盒」之制度內涵進行整理,並比較企業實證特例制度及專案刑沙盒兩者制度上之異同。   本文最後發現,日本之沙盒制度設計上確實符合其減少事前管制、強調事後確認與評估、建立風險控管制度、課與主管機關提供資訊與建議之義務以及強化業者與主管機關聯繫等目標。同時,本文認為日本沙盒制度中有兩項制度特色值得我國關注及參考。第一,日本成立了包含外部專家的「評價委員會」,協助政府單位了解創新事業之內容及法規制度之觀察。第二,日本未來將提高實證制度之協調層級,在日本內閣府下設立單一窗口協助申請者決定其可適用之實證制度。

日本修法防止元宇宙品牌商標仿冒

日本政府於今(2023)年3月10日,閣議通過不正競爭防止法等一系列智財法律修正案,包括商標法、不正競爭防止法、意匠法(設計專利)、特許法(發明專利)、實用新案法(新型專利)、工業所有權特例法等智財相關六法修正案。5月11日送第211回國會(眾議院)審議中。 本次智財法律修正案,係為求智慧財產進行適當的保護與提升智慧財產制度的便利性,並確保國內外事業者間公平競爭,修法擴充他人商品型態的仿冒態樣,創設基於商標權人的同意下近似商標註冊制度;設計專利的新穎性喪失例外適用之證明手續的簡化、發明專利等國際申請優先權主張之手續電子化,另對外國公務員贈賄罪之罰金上限提高等措施。 為強化數位化多元事業品牌保護,除商標法修法以擴充可取得註冊商標,針對防止數位空間之仿冒行為,不正競爭防止法規定,自原始商品於日本首次銷售起三年內(不正競爭防止法第19條第1款第5項),禁止銷售與該商品非常近似的仿冒商品,然修法前前述行為態樣不適用於數位空間。本次修法為防止數位空間之仿冒行為,規定商品型態的仿冒行為,即使係發生於元宇宙等數位空間亦構成不正競爭行為,可行使侵害排除及侵害防止請求權(不正競爭防止法第2條第1款第3項)。 日本透過智財修法將商標保護觸角延伸入虛擬空間之作法,可作為我國未來政策推動與修法之借鑑。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

英國發布「人工智慧:機會與未來決策影響」政策報告,並聚焦人工智慧運用及管理

  英國科學辦公室於2016年11月9日,發布一份政策報告:「人工智慧:機會與未來決策影響(Artificial intelligence: opportunities and implications for the future of decision making)」,介紹人工智慧對於社會及政府的機會和影響,此份政策報告並提出以下各項重要建議: (一)關於人工智慧及應用界定與發展   人工智慧是指由人工製造系統所表現出來的智慧。不僅是將現有的流程自動化,還包含制定目標,並利用電腦程式實現這些目標,常見案例包括線上翻譯、語音辨識、搜尋引擎篩選排序、垃圾郵件過濾、透過用戶回饋改善線上服務、預測交通流量、環境或社會經濟趨勢發展觀察等。 (二)未來對社會及政府利益及衝擊   人工智慧針對提高生產力有巨大的潛力,最明顯的就是幫助企業或個人更有效地運用資源,並簡化大量資料的處理,例如Ocado 及 Amazon這樣的公司正充份利用人工智慧改善倉儲及銷售網路系統,使得客戶可便利快速購得網購商品。   目前,政府也日益增加相關技術的運用,以提高公共服務效率,使資源達到最佳化分配;減少決策者被誤導的可能;使政府決策透明化;確保各部門更了解人民的意見。然政府在利用人工智慧及巨量資料時,應遵守倫理使用指南,並遵守英國資料保護法及歐盟一般資料保護規則等相關法規。   在巨量資料、機器人、自動系統對於勞動市場的衝擊一直都是關注的議題,對於面臨未來工作結構的轉型及相關技術人員的進修及培養,應及早規劃,以適應未來的轉變。 (三)關於相關道德及法律風險管理課題   人工智慧可能潛在相關道德倫理問題。許多專家認為政府應積極管理並降低風險發生可能性,可從以下兩個面向思考: (1)研究機器學習與個人資料運用結合時,對個人自由、隱私和同意等概念的影響。 (2)調適由人工智慧作決策行為時的歸責概念和機制。   有關實際案例之研究,則包括,執法單位在應用預測技術時,應避免以種族、國籍、地址作為標準,並嚴守無罪推定原則,以防止民眾受到歧視或不公平的指控;透過人工智慧可從公開資料推測出某些私人訊息或其親朋好友的消息,此訊息即可能超出原先個人同意披露的內容;原先匿名化及去識別化的訊息,因人工智慧功能加強,導至可能被重新識別,故須定期檢視該保護措施是否足夠。另外,人工智慧的演算偏差可能導致偏見的風險,為了降低這種風險,技術人員應採取對應措施。   針對責任及疏失的判斷,目前尚無太多的實務案例,但為保持對使用人工智慧的信任,仍需有明確的歸責制,可能有必要讓首席執行長或高級主管對人工智慧做出的決策負最終責任。許多專家也建議,部分技術內容須保持透明度,以確定技術使用時是否有盡到相關注意義務。   人工智慧已成為未來發展趨勢之一,對於社會整體層面影響將越來越深,新的技術除了可提升生產力,帶來便利的生活,同樣也會帶來衝擊。為促進相關產業發展及推展新技術的使用,應打造技術發展友善環境,並對於公眾安全進行相關風險評估,如果風險屬於現有監管制度範圍,應評估是否可充分解決風險,或是須要做相對應的調適。另外,在人工智慧融入現實世界同時,相關業者應注意相關產品安全性、隱私權保護和從業人員的倫理教育,以提高大眾對新技術的接受及信賴,並確保對於未來挑戰及轉變已做好萬全準備。

TOP