食品標示 美國新制上路

  隨著食物過敏與過胖等健康問題愈來愈受重視,美國FDAFood and Drug Administration 食品暨藥物管理局)規定從200611起,食品製造商必須在食品標示上揭示產品中八種主要過敏原與反式脂肪(trans fat)含量,並且必須加強揭示卡路里含量、說明整個包裝所含的養分。


  依據此項新規定,廠商必須在食品標籤上以簡易的文字,標示八種容易造成過敏的過敏原,包括核果(杏仁、胡桃、大胡桃)、牛奶、蛋類、魚類、甲殼綱蝦蟹、花生、大豆與小麥。至於反式脂肪,又稱為轉化脂肪或反脂肪,是不飽和脂肪酸的一種,它會刺激人體內低密度脂蛋白(
LDL)的增加,進而使低密度蛋白膽固醇(LDL-C)的量增加。LDL-C又被稱為『壞膽固醇』或『不好的膽固醇』,它會間接刺激膽固醇升高,增加罹患心臟血管疾病的風險。過去一直沒有決定每人每天攝取量標準,因此在商品包裝上的營養成分表(Nutrition Facts Table)一直都沒有列出反式脂肪含量,但是新制上路後,在包裝標籤上面也必須列出反式脂肪含量。


  在消費者越來越重視健康問題之趨勢下,未來如何製造反型脂肪低或零含量的食用加工油脂產品,相信會是相關業者所面臨的新挑戰。

相關連結
※ 食品標示 美國新制上路, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=429&no=57&tp=1 (最後瀏覽日:2025/05/20)
引註此篇文章
你可能還會想看
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

德國聯網車輛駕駛策略

  德國聯邦政府目標擬定於2020年實現高度自動化駕駛,為達成自動駕駛目標,車聯網(Connected driving)及智慧交通系統(Intelligent transport systems)技術成為必要發展工作項目。車聯網即透過無線通訊技術,使車輛間(Vehicle-to-Vehicle, V2V)或車輛對基礎設施 (Vehicle-to-Infrastructure, V2I)等彼此交換訊息,或是將行車資訊傳輸到伺服器,並透過資訊網路平臺將資料整合利用,並依不同功能需求進行有效監控管理和提供綜合服務。未來,可預見道路使用者的個別交通資訊的質與量將大幅提升,無論是部份自動駕駛或高度自動駕駛,將產生龐大資料量,故系統需要即時迅速的運算能力。例如,前方一旦發生車禍事故,必須通知後方自動模式駕駛車輛即時減緩速度,並適時轉由駕駛人員介入操控。   自動化及車聯網駕駛發展係為跨領域之問題,聯邦政府即針對五大領域問題:基礎設施、法規、創新研發、聯網化、資訊安全及資料保護,提出一連串作法及措施,確保德國汽車產業能保持領先地位。   我國資通訊及汽車零件產業具備技術相對優勢,然應就適合我國車聯網之實際需求發展,促進相關產業創新應用,並利用我國產業優勢與國際接軌,讓台灣在車聯網的發展中取得先機。

美國發明法(Leahy-Smith America Invents Act, AIA)於今年(2013)3月16日全面生效

  美國發明法(Leahy-Smith America Invents Act, AIA)於今年度(2013)3月16日全面實施,係近年來美國專利制度的重要變革,茲就AIA第三階段生效的重點介紹如下:   1.專利權申請制度的變革   為促進美國專利制度與國際接軌、保障發明人權利,專利申請權歸屬將由原本的「先發明制」(First to Invent),改為發明人「先申請制」(First Inventor to File)。簡言之,是以「有效申請日」先後決定專利權歸屬。   2.新穎性標準的修改   修法後的新穎性標準係以「有效申請日」為斷。惟,新法仍保留新穎性寬限期(grace period)之規定,為避免採行「先申請制」而延宕發明技術公開之窘境,新法限縮申請人享有寬限行為的範圍,僅限於「發明人的公開行為」才不構成先前技術之公開。   上述兩項修法內容皆於3月16日正式生效。美國總統歐巴馬於2月的座談會中公開表示,AIA為其任內推動的重要修法,顯示政府欲藉由法制改革,打擊專利蟑螂濫訴的決心。

美國加州公共事業委員會提出自動駕駛車輛試點計畫

  加州公共事業委員會(California Public Utilities Commission, CPUC)提出自駕車試點計畫,允許在未有配置人類駕駛之情況下測試自駕車,此次計畫包含兩個試點項目,將於5月被五人委員會審核,並決定是否批准。   第一個試點項目允許參與廠商之自駕車上路測試,並須配置經培訓的人類駕駛於自駕車內,以應付隨時的突發狀況;第二個試點項目則允許無人駕駛之自駕車上路測試,惟在無人類駕駛隨車之情況,必須符合加州機動車輛管理局(Department of Motor Vehicles, DMV)之規定,如遠端監控車輛狀態及操作,以保障乘客安全。   參與廠商必須定期向CPUC及DMV繳交營運報告,包含測試期間車輛碰撞(collision)及解除自動駕駛(disengagement)次數。   此次試點計畫已開放廠商申請,科技大廠及叫車服務公司如Google、Tesla、Uber以及Lyft等目前亦已正進行自駕車之設計與測試。若此提案通過,CPUC將進一步規劃自駕車載客服務之相關辦法,使自駕車測試之法制更臻完善。

TOP