菲律賓推動基改稻米 窒礙難行

  根據國際間重要農糧組織ISAAAInternational Service for the Acquisition of Agri-Biotech Applications)所公布的2004年統計報告,全球基改作物栽種面積已達八千一百萬公頃,在2003年僅有六千七百萬公頃,成長幅度高達20%,尤其是在開發中國家。菲律賓是亞洲第一個支持商業化生產基因改造食物的國家,從2000年起即開始商業交易基因改造作物。由於其所研發之轉殖”IR-72”稻米品種栽培並不普遍,也未被消費者、農夫及麵粉業者廣泛地接受,因此不合適商業化生產,雖然菲律賓嘗試其他較受歡迎的品種來進行基改轉殖,但迄今尚未成功。


  基於基因稻米對於環境安全和人體健康所帶來的影響是無法預知的,綠色和平組織抗議菲律賓政府加速推動生技農作物的計畫。菲律賓所面臨的挑戰不單僅是綠色和平的抗議,另一個因素因為氣候的不穩定而影響了稻米的產量,今年生產量僅
148萬噸,距離目標?151萬噸,因此仍需仰賴進口稻米來彌補這不足的差距。


  菲律賓稻米研究中心執行長
Leo Sebastian認為,基改稻米並不是解決稻米供應不足的唯一方式,引介栽種高生產量的稻米品種或者改善灌溉系統等都是可行的方式。

相關連結
※ 菲律賓推動基改稻米 窒礙難行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=430&no=57&tp=1 (最後瀏覽日:2026/01/22)
引註此篇文章
你可能還會想看
以再生能源公司終止併購而衍生之營業秘密糾紛案為鑒,提供企業管理建議

2025年7月30日,美國加州法院指出公司濫用合作談判地位以爭奪再生能源市場之行為,從商業角度極為惡劣,將面臨重大法律風險,並認定Phillips 66能源公司須向Propel Fuels(下稱Propel)競爭公司給付共約8億美元的賠償金。 本案源於2017年,Phillips 66公司以收購為由,雙方簽署收購意向書,對Propel公司進行盡職調查。於此期間,Propel公司依保密契約向Phillips 66公司揭露其再生柴油專屬策略與資訊,Phillips 66公司並從 Propel 下載近 3千份包含營業秘密的紀錄。於2018年8月24日,Phillips 66公司突然終止收購並於下一工作日向加州監管機構宣布其將加入加州再生能源市場,2019年正式銷售高混合可再生柴油。 2022年2月16日,Propel公司向加州法院控訴Philips 66公司不當使用Propel公司花費13年研發得出之財務與銷售資料、營運模式及其再生能源業務的預測資料等營業秘密,致Propel公司損失2億美元。於2024年10月16日,本案認定Phillips 66公司違反加州統一營業秘密法(Uniform Trade Secrets Act),不當使用Propel公司的營業秘密, Phillips 66公司應賠償6.049 億美元。其後,本案認定Phillips 66公司行為屬惡意不當使用營業秘密,依加州統一營業秘密法,法院可另將懲罰性賠償金增加至2倍。2025年7月底,本案認定之賠償金達到8億美元,包含自2024年之6.049億美元的補償性賠償金,以及因Phillips 66公司「惡意」不當使用營業秘密的行為,追加1.95億美元的懲罰性賠償金。 綜觀前述實務案例可得知,即便公司間已簽訂保密契約,仍存在公司假借併購盡職調查、合作協商為由,要求他公司提供機密資料。為降低與外部合作而衍生之機密外洩風險,以下為公司提供資料對外之前、中、後階段可參考之管理建議: 1. 對外提供資料前 (1) 內規定義營業秘密搭配機密分級,了解營業秘密之範圍,並依據不同機密等級採取相應的管制措施。 (2) 對外提供資料前,營業秘密相關之權責人員應審查資料適合揭露與否。 (3) 與外部合作協商前,即應確認簽訂保密契約與約定權利歸屬。 2. 已對外提供資料 倘若已對外提供資料,建議採取限制流通、限制權限等作法,如僅限該合作計畫相關人員透過身分認證登入帳號,方有線上瀏覽機密之權限等方式。 3. 對外提供資料後 於合作結束或協商破局之情況,應要求合作方返還或銷毀營業秘密,如為銷毀,應附上相關聲明並佐證執行紀錄。 前述建議之管理作法已為資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」所涵蓋,企業如欲精進系統化的營業秘密管理作法,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國競業禁止條款之修法趨勢及對離職員工之管理建議

  美國聯邦貿易委員會(The Federal Trade Commission, FTC)於2023年1月5日提出聯邦規則彙編(Code of Federal Regulations, CFR)之修正草案,其基於競業禁止條款(Non-Compete Clauses)將阻止員工離職及員工之競爭、降低員工的薪資、阻止新企業之形成及阻礙創新等立法目的,擬禁止僱用人及受僱人間約定競業禁止條款及使現有的競業禁止條款歸於無效。   美國亦有相關報導提到員工流動於技術領域尤為常見,因技術領域之企業對營業秘密高度重視,故對於員工離職到競爭對手會特別留意,例如加州的許多企業(尤其是位於矽谷之企業)會與員工簽署保密合約規範對於機密資訊的處理,部分合約甚至包含競業禁止條款以限制員工於離職後至競爭對手處工作,不論係保密合約或競業禁止條款,其目的均係延遲或避免員工於離職後帶走公司敏感資訊並將其用於對前僱主不利之用途。   聯邦規則之修正草案一旦通過,未來美國的企業將不得再以約定競業禁止條款之方式限制離職員工至競爭對手處工作,但企業仍可透過在員工離職前或離職後採取相關措施,盡早發現並降低離職員工竊取公司敏感資訊的風險,可採取的措施例如:   1.留意員工離職前是否有未經授權或為完成工作以外之目的複製或存取公司的資料之行為,意即,這些蒐集來的資訊是否將用於新公司的工作(如改良競爭對手的產品、擴大競爭對手的客群等);   2.對員工個人工作設備(如:公司提供之筆電及手機)或網路存取紀錄等進行調查,檢視是否有異常檔案存取紀錄或異常行為(例如是否突然大量刪除/複製檔案);   3.了解員工的離職原因及於離職後的規劃——可以了解員工未來可能從事的職業、就職的企業以調整離職前調查的程度;   4.留意員工於找到新雇主後是否仍持續使用公司的營業祕密——新雇主亦須留意的是,新進員工是否仍持續使用前公司的營業秘密,以避免公司被訴。   本文同步刊登於TIPS網站(https://www.tips.org.tw)

澳洲政府提案立法強制要求跨國科技公司協助解密通訊APP訊息

  澳洲政府2017年07月14日宣布提案立法新資安法規,強制要求跨國科技公司如社群網站Facebook與設備製造廠商Apple等,需配合法院命令,協助解鎖通訊APP的加密訊息,利於政府監控攔截犯罪嫌疑人的加密訊息。澳洲政府同時宣布會在2017年11月前提案,預期在幾個月內通過。   澳洲總理Turnbull表示相關提供加密語音及訊息的APP已在日常生活中使用,根據法案,前述相關網路科技公司,將與電信公司負有相同義務協助執法單位解讀加密訊息。Turnbull表示,儘管政府已成功阻止部分激進份子案例,但由於訊息加密技術日益發展,執法機構愈來愈難取得諸如恐怖分子、販毒者與戀童癖的聯絡訊息,執法單位需要更多支援,以確保網路不會成為犯罪溫床。   澳洲預期成為首個立法監管網路加密語音及訊息APP的國家,目前英國與法國皆在研擬監管加密語音及訊息的法規,同時美國、英國、加拿大、澳洲與紐西蘭組成的「Five Eyes」情報共享聯盟,也在2017年07月將相關議題列入討論。   Facebook表示將抵制Turnbull政府的反加密立法,認為現行已有與安全部門共同合作機制,該法案並無實際用途,在無配套措施的情況,該法也無法實施。Apple執行長Tim Cook 則堅定回應,排除任何可能損及產品安全性的政府合作關係。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP