二氧化碳減量 環保署建議政策環評

  環保署近日表示,一九九八年所訂二氧化碳減量標準無法達成,建議參考經濟合作暨發展組織( OECD )模式,在二二五年年平均成長率降為一%,對工業、能源和交通等有影響環境之虞的政策實施「政策環評」。但學者研究認為,及早因應比延後減量更有利。依據環保署所提出對溫室氣體減量根本問題,所牽涉的工業、能源和交通等重大政策進行政策環評,首當其衝包括蘇花高、中油八輕和台塑大煉鋼廠恐都將接受「檢驗」。


  除鋼鐵排放持續逐年增加,國內前一百大公司的溫室氣體排放量佔工業部門排放量九成,住商和運輸部門執行情況也差。尤其推動汽燃費改隨油徵收一直未落實,交通政策以大量資金投注在新道路建設,吸引更大車流,應檢討整體運輸政策。


  在策略上,應根據現有環境影響評估法第廿六條,訂定「政府政策環境影響評估作業辦法」,對國家溫室氣體減量最根本所在的工業、能源、交通政策,以及其他有影響環境之虞政策,都應實施「政策環評」,並應建立現有能源價格和徵收碳稅討論機制。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 二氧化碳減量 環保署建議政策環評, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=455&no=57&tp=1 (最後瀏覽日:2025/11/29)
引註此篇文章
你可能還會想看
論數位經濟下研究報告開放近用及著作權例外國際新發展

Grindr交友軟體要求使用者持護照及個人資料自拍,遭到歐洲數位權利中心抗議

  歐洲數位權利中心(The European Center for Digital Rights,下稱noyb)為提倡網路隱私權、消費者隱私的非營利組織,其於2021年11月12日向奧地利資料保護局(Austrian Data Protection Authority, DSB)投訴Grindr公司,抗議該公司的Grindr應用程式違反歐盟的一般資料保護規範(即General Data Protection Regulation,下稱GDPR)。   Grindr是款交友約會軟體,主要的使用者為男同性戀、雙性戀以及跨性別者。使用者註冊帳號時,僅需提供電子郵件信箱帳號及密碼和一些個人基本資料即可。然而,若使用者想了解Grindr公司如何使用其個人資訊時,Grindr公司要求使用者需手持記載其電子郵件的字條,或拿著護照自拍,經該公司確認使用者身分後,才會配合使用者的請求。noyb直言,Grindr公司的認證政策不僅荒謬,更違反了GDPR。    noyb代表一個名為「Hunk_69」的帳號使用者提出投訴,這個帳號因為身分認證失敗而遭到Grindr公司拒絕透露該公司如何使用其個人資料。noyb指出Grindr公司對於使用者提供個人資料的政策前後不一,儘管使用者在使用Grindr交友時可以保持匿名狀態,但在向Grindr公司請求提供個人資料用途時,卻需要提供真實身分。noyb主張Grindr公司已經違反歐盟GDPR第5條(1)©「資料最少化原則」。多數公司多半以「安全理由」要求客戶提供個人資料供其認證,但這樣的要求是不當的,根據奧地利聯邦行政法院、愛爾蘭資料保護委員會(the Irish Data Protection Commissioner, DPC),以及丹麥資料保護局(Danish Data Protection Agency, Datatilsynet)近期裁決見解,認證客戶身分必須個案評估使用者的身分是否有疑慮,而非一概的要求使用者進一步提出個人資料以供公司認證。因此,使用者在Grindr註冊帳號時,既然毋庸提供真實姓名,則Grindr公司於認證使用者身分要求提出真實姓名,實際上是無任何幫助,反而違反了GDPR第5條「資料最少化原則」及第12條(6)規定。   noyb創辦人Max Schrems表示,Grindr的設計就是讓使用者保持匿名狀態,因此使用者僅須使用電子郵件信箱和密碼,就可以在Grindr上與人互動,甚至分享最私密的照片,但想要實行GDPR相關權利時,卻須自行揭露身分並提供身分證明。   Grindr公司則認為,如果使用者想要實踐GDPR賦予使用者的權利,不願與Grindr分享任何個人資訊,可以刪除Grindr帳號。

歐盟與美國宣布就新的跨大西洋資料傳輸框架達成原則性協議

  歐盟委員會與美國白宮於2022年3月25日發布聯合聲明,宣布雙方已就新的跨大西洋資料傳輸框架達成原則性協議。此舉旨在因應2020年7月歐盟法院(Court of Justice of the European Union)於Schrems II案的判決中宣告「歐盟—美國隱私盾協定」(EU-US Privacy Shield Framework)不符合歐盟一般資料保護規則(General Data Protection Regulation, GDPR)而無效。依照該聯合聲明,新的框架將在雙方間資料流動的可預測性、可監督性、可信賴性以及可救濟性等方面進行補強,以充分維護公民的隱私與自由權利。   目前,該框架仍處於原則性協議的階段,具體細節仍有待後續談判。聯合聲明指出,美國在下列三個方面做出了「重大承諾」: 加強控管美國的情報活動,以確保所追求國家安全目的適法,且所採取的手段係在必要範圍內,而未過度侵犯公民的隱私與自由。 建立具有約束力且獨立的多層次救濟機制,其中包含一個由非政府人員所組成的「個人資料保護審查法院」,並賦予該組織完全的審判權。 針對情報活動強化分層且嚴格的行政監督機制,以確保其合乎隱私與自由的新標準。   上述原則性協議的達成,表面上無疑是一項好消息,將有助於解決雙方跨境資料傳輸的法源爭議,並避免持續演變成嚴重的歐美貿易爭端。然而,美國政府能否順利將新框架轉化為具有約束力的國內行政命令,仍存在相當多的不確定因素。若結果為否,則最終亦難以達成取得歐盟根據GDPR所為「適足性認定」(adequacy decision)的政策目標。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP