環保署近日表示,一九九八年所訂二氧化碳減量標準無法達成,建議參考經濟合作暨發展組織( OECD )模式,在二○二五年年平均成長率降為一%,對工業、能源和交通等有影響環境之虞的政策實施「政策環評」。但學者研究認為,及早因應比延後減量更有利。依據環保署所提出對溫室氣體減量根本問題,所牽涉的工業、能源和交通等重大政策進行政策環評,首當其衝包括蘇花高、中油八輕和台塑大煉鋼廠恐都將接受「檢驗」。
除鋼鐵排放持續逐年增加,國內前一百大公司的溫室氣體排放量佔工業部門排放量九成,住商和運輸部門執行情況也差。尤其推動汽燃費改隨油徵收一直未落實,交通政策以大量資金投注在新道路建設,吸引更大車流,應檢討整體運輸政策。
在策略上,應根據現有環境影響評估法第廿六條,訂定「政府政策環境影響評估作業辦法」,對國家溫室氣體減量最根本所在的工業、能源、交通政策,以及其他有影響環境之虞政策,都應實施「政策環評」,並應建立現有能源價格和徵收碳稅討論機制。
本文為「經濟部產業技術司科技專案成果」
芬蘭科學院(Academy of Finland, AOF)是隸屬於芬蘭教育、科學及文化部的專業研究資助機構,旨在促進芬蘭科學研究的多樣化及國際化,資助前端突破性科學研究,提供科學技術及科學政策的專業知識,並加強科學研究的地位。芬蘭科學院最高決策單位為七人委員會,委員會主席由科學院院長出任。 底下設有:文化與社會、自然科學與工程、健康醫學以及環境與自然資源四個研究委員會。每一委員會設主席一人委員十人,任期三年。行政單位由大約一百位專家組成,主要工作為準備及執行七人委員會及各研究委員會的各項工作與決策,並撰寫科學報告和研究計畫。 其任務包括獎助大學與研究機構內的科學研究工作與團隊、參與多邊研究計畫的規劃與獎助、資助芬蘭研究人員參與國際研究計畫、評估科研計畫的品質及水準,以及科技政策專業諮詢等。研究範圍涵蓋建築、太空研究、細胞生物和心理學到電子和環境科學研究。
OECD就全球企業最低稅負制發布避風港規則經濟合作暨發展組織(下稱OECD)於2022年12月20日發布全球企業最低稅負制(即第二支柱,下稱最低稅負制)的「避風港與罰款免除規則」,再於2023年2月2日發布進階行政指引。系爭規則與指引旨在協助跨國企業降低法律遵循成本。 經蓋最低稅負制為防免跨國企業以稅捐規劃(如移轉訂價等方式)持續侵蝕稅基,透過實施補充稅(Top-up Tax)制度,並配合所得涵蓋與徵稅不足支出等原則,即向上或向下分配等方式,確保全球收入逾7.5億歐元的跨國企業及其所有經濟實體的個別有效稅率均不低於15%。 經上述補充稅制度看似簡單,惟其實施同時涉及各國相互合作與彼此補充稅間可能的零和遊戲,徵之各國境內稅捐制度調整、現有國際稅捐規則的淘換與新國際稅捐規則的建立等交互作用下,導致OECD與最低稅負制有關文件繁多,內容細項更不計可數,增添不確定性;另外,包含我國在內的許多國家均表示將於2024年起陸續實施全球企業最低稅負制,再增添急迫性。此不確定性與急迫性的雙重夾擊,致使受規範跨國企業法律遵循成本持續增加。 經準此,為避免最低稅負制不當限制跨國企業發展,甚至有害全球經濟,OECD提出避風港條款,使位於高稅負或低風險稅捐管轄區的跨國企業或其經濟實體得減免其補充稅或簡化其計算基礎等,提高補充稅制度確定性以協助降低跨國企業法律遵循成本。
歐洲議會批准提升線上平台商業行為公平性之新規則有鑑於線上市集(如Google Play)、訂房網站等線上平台提供了迅速進入國際消費市場之機會, 因此成為了數百萬企業提供服務的首選之地。然而,存在於「平台對商家」(platform–to-business, P2B)之間的某些結構性問題,卻導致了企業之間的不公平交易行為。是以,歐洲議會、歐盟理事會與歐盟執委會於2019年2月14日就「提升線上中介服務商業用戶的公平性與透明性規則」(Regulation on promoting fairness and transparency for business users of online intermediation services),達成政治協議,歐洲議會並已於2019年4月17日批准。 該規則為全世界第一個針對線上平台與商業用戶訂定之規則,係數位單一市場策略(Digital Single Market Strategy)的一部分,預計適用於整個線上平台經濟,亦即,目前在歐盟境內營運的7000個線上平台或市集都包含在內,無論是科技巨擘,抑或是規模雖小但對商業用戶具重要議價能力的新創公司(small start-ups)皆屬之。此外,新規則中涉及搜尋結果排序透明度之部分,亦將適用於搜尋引擎。 其中,由於數以百萬計的中小企業是構成歐盟經濟的重要支柱,是以此番訂定的新規則,係專門針對此些較無議價能力的中小企業而設計。中小企業可自新規則中獲益之項目主要有四: 1. 禁止特定不公平行為 (1) 不得突然且未附理由的暫停帳號使用權 線上平台不得在無明確理由或未提供申訴可能性之情況下,暫停或終止賣家帳戶。 (2) 條款與條件需簡明易懂且變更時須提前通知 條款與條件需易於取得且以簡明易懂之文字書寫,當條款與條件有所變更時,線上平台需在15天之前通知,使賣家得即時調整業務,並可視業務調整複雜度適時延長通知期間。 2. 提升線上平台透明度 (1) 排序透明化 市集與搜尋引擎需揭露其排序商品或服務的主要參數,以利賣家進行適度優化。 (2) 強制揭露線上平台的部分商業行為 由於部分線上平台除了提供市集促進交易進行,更在該市集中身兼賣家之角色,是以,為維護公平競爭的環境,新規則強制此些線上平台全面揭露任何可能給予自家產品的優勢。此外,該等線上平台還需揭露所蒐集之資料及使用方式,尤其是與其他商業夥伴共享之資料。當涉及個人資料時,則有一般資料保護規則(General Data Protection Regulation, GDPR)之適用。 3. 增設爭端解決機制 (1) 建立投訴處理系統 線上平台應建立內部投訴處理系統以對商業用戶提供適當協助。 (2) 設置調解程序 線上平台應提供調解之協助,以助賣家在法庭外解決爭議,有效節省時間與金錢。 4. 規則之實施 商業公會能對違反規則之線上平台提起告訴,以降低賣家對平台報復行為的恐懼,並降低個別賣家的訴訟成本。 在歐洲議會批准後,一旦歐盟理事會同意,新規則將在公布後12個月後正式施行,且為了確保新規則與時俱進,歐盟將在適用後的18個月內進行檢視,並設立專門的線上平台觀測站(Online Platform Observatory),以監控市場的變化,並確保新規則有效施行。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).