國際油價持續飆漲,如何找到替代能源,已成為生技發展的一項重要課題,財團法人生物技術開發中心過去兩年密集和美國德拉瓦州的 Fraunhofer 分子生物科技中心( Fraunhofer USA Ins.- Center for MolecularBiotechnology )技術合作,以微生物發展工業酵素,可取代乙二醇( EG )做為塑膠材料,這項合作已吸引台塑及中油的高度興趣。
生技中心自去年起與美國 Fraunhofer 衍生公司 Athenabio 合作,投入二十萬美元發展工業酵素,以微生物來取代化工製程,開發出一三丙二醇。這項化工原料在西方已被視為取代乙二醇,扮演「生化煉油廠」的典型產品,結合對苯
除了工業酵素外,生技中心也與美國 Fraunhofer 分支機構分子生物科技中心簽署合作協議,計劃未來兩年內,以植物根部來生產流感疫苗,而以植物來生產流感疫苗的技術,其收成期僅需二至三周,每公斤的植物根部可生產的疫苗約○.二至○.五毫升,同時可省下四億美元投資額的生物發酵槽。此項利用植物扮演製藥廠的構想,該中心算是這項領域的技術領先者,以相同的技術所生產之炭疽疫苗,已獲美國食品藥物管理局( FDA )核准進入臨床( IND ),將進行一期臨床試驗。
本文為「經濟部產業技術司科技專案成果」
2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下: 應平衡政府近用資料與隱私保護措施,以合理限制蒐集、使用及揭露資料。 應與現行以及新興國內外隱私與資料近用框架一致,並應進行告知。 應將資料近用權利與隱私保障納入立法中。 應以包容性與科技中立用語定義資料。 應使政府管理資料措施與現行個資保護目的協調一致。 應具體指明資料涵蓋內容、使用目的與限制使用對象,並減少資料被執法單位或經法院授權取得之阻礙。 應使用易懂之語言知會使用者關於政府蒐集、使用與揭露以及資料的重要性。 認知到告知同意是重要的,但同時應提供政府於取得同意不可行時,平衡個人隱私期待之各種可能途徑。 認知到不可逆的去識別化資料在許多情況下的困難度。 支持資料安全保護。 定期檢查資料隱私保護狀態與措施。 以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。
電信業者提供視訊服務之外國法制研析 國內推廣生質柴油仍待政府協助耐斯集團旗下台灣新日化公司今( 94 )年開始生質柴油商業運轉,卻面臨植物原料短缺以及政府推動生質柴油政策不如歐美先進國家明確等困境。 由於國內生質柴油每公升 35 元,價格遠高於石化柴油,再加上欠缺銷售通路、使用不便及原料來源不足等問題,生質柴油產業發展面臨困難,急需政府協助。台灣新日化總經理張志毓強調,政府若能效法美國、法國等先進國家,政策規定傳統石化柴油須添加一定比率的生質柴油,並鼓勵國內休耕、廢耕地業主種植向日葵、油麻菜籽等生質柴油原料,不僅可降低生質柴油製造成本及售價,有效擴大生質柴油的使用,亦可達到降低環境汙染及促進資源利用等多重目的。 國外部分國家如法國、美國,也有以政府政策規定石化柴油添加部分生質柴油,同樣有減少二氧化碳排放量的效果。全球使用生質柴油最多的地區在歐盟,德國是全球使用量最多的國家,佔全球比率高達四成。 在經濟部能源局推動生質柴油產業化政策的計劃支持下,去年台灣新日化與工研院能資所共同建立生質柴油示範工廠,已於 10 月 8 日公開啟用,初期第一套設備年產為 3,000 公噸,全部設備總產能可達到 1 萬公噸,今年開始商業運轉,也是我國發展植物替代石化燃料的新里程碑。台灣生質柴油應用於交通工具,仍在試驗階段,例如嘉義縣環保部分清潔車即使用台灣新日化生質柴油,尚未發現有不良反映。
歐盟第29條工作小組發布「自動化個人決策和分析指引」處理個人資料自動化決策與資料剖析風險問題歐盟第29條工作小組於2017年10月3日為因應歐盟一般資料保護規則(GDPR)第22條規定發布「自動化個人決策和分析指引」(Guidelines on Automated individual decision-making and Profiling for the purposes of Regulation 2016/679,2018年2月6日進一步修正,下稱指引),處理對個人資料自動化決策(automated decision-making)和個人檔案剖析(Profiling)的建立。 指引分為五個部分與最佳實踐建議,旨在幫助資料控制者(controller)合乎GDPR對個人資料自動化決策和分析的要求,內容包括下幾點:1.定義自動化決策和分析,以及GDPR對這些概念的處理方法;2.對GDPR第22條中關於自動化決策的具體規定;3.對自動決策和分析的一般規定;4.兒童和個人檔案剖析(Profiling)的建立;5.資料保護影響評估。 指引的主要內容包括: 個人檔案剖析(Profiling),意謂收集關於個人(或一群個人)的資料,並分析他們的特徵或行為模式,加以分類或分群,放入特定的類別或組中,和/或進行預測或評估(例如,他們執行任務的能力,興趣或可能的行為)。 禁止對個人資料完全自動化決策,包括有法律上法或相類重大影響的檔案剖析,但規則也有例外。應有措施保障資料主體的權利,自由和合法利益。 GDPR第22條第二項a之例外規定,(履行契約所必需的),自動化個人決策時,應該作狹義解釋。資料控制者必須能夠提出分析、自動化個人決策的必要性,同時考慮是否可以採取侵害隱私較少之方法。 工作小組澄清,關於在要求提供有關自動化決策所涉及的邏輯上有意義的資料時,控制者應以簡單的方法,告訴資料主體其背後的理由或依據的標準,而不得總是以自動化決策所使用算法進行複雜的解釋或者公開完整的算法為之。所提供的資料應該對資料當事人有意義。 對資料主體提供關於處理自動化決策上有關重要性和預期後果的資料,其意義在於必須提供關於該資料之用途或資料未來處理以及自動化決策如何影響資料主體的重要訊息。例如,在信用評等的情況下,應有權知道其資料處理的基礎,資料主體並能對其作出正確與否的決定,而不僅僅是關於決策本身的資料。 「法律效果」是指對某人的法律權利有影響,或者影響到個人法律關係或者其契約上權利。 工作組並未將GDPR前言71段視為絕對禁止純粹與兒童有關的自動決定,指出僅在某些情況下才有其適用(例如,保護兒童的福利)。 在基於自動化處理(包括分析)以及基於哪些決策產生法律效應或類似顯著效果的基礎上對個人方面進行系統和廣泛評估的情況下,進行資料保護影響評估並不局限於「單獨」自動化處理/決定。