根據歐盟條約,國家補助的行為原則上為條約所禁止,例外須經歐盟執委會核准。為使會員國得以事先瞭解哪些行為會被認為符合共同市場的精神,歐盟執委會在11月22日針對國家補助規則,通過了「研究發展與創新綱要架構」(Community framework for state aid for research and development and innovation,以下簡稱為R&D&I Framework),期能加速此類案件的審理效率。新綱要架構規定預計自2007年1月1日起開始生效適用。 根據新的綱要架構,會員國在規劃其國家補助措施之際,仍有義務通知執委會,經執委會確認或核准後,始符合歐盟相關法制。不過執委會認為,會員國在規劃國家補助措施時,如能依循綱要架構的指導說明,將可加速執委會的作業,提升審查效率。 過去僅有研發補助可例外被認為符合歐盟條約之精神,惟根據新的綱要架構,除了研發補助以外,創新補助亦是可以獲得豁免管制者。此外,綱要架構對特定有助於研究發展與創新的國家補助措施類型,提供了詳細的指導原則說明,這類國家補助措施可以帶動私人企業的研發與創新投資,有助於經濟成長與就業,因而可提升歐盟的競爭力。 R&D&I Framework同時也允許會員國視其國內發展狀況與特殊條件,設計符合該國之補助措施,前提是要符合可矯正特定市場失靈的檢視要件,且其所設計的措施可能帶來的優惠超出補助對競爭可能造成之損害。 另新綱要架構也指出阻礙研發與創新的主要市場失靈的因素如下:知識外溢(knowledge spill-overs)的效果有限、資訊不足與不對稱(imperfect and asymmetric information)、缺乏協調與網絡建構(coordination and network failures)。此外,新綱要架構中亦針對各類行的國家補助措施,逐項為會員國解說如何妥善運用,以符合補助規則(state aid rules)。這些政策措施如下: ●研發計畫(aid for R&D projects); ●技術可行性之補助研究(aid for technical feasibility studies); ●對中小型企業智慧財產權費用給予補助(aid for industrial property right costs for SMEs); ●對新創事業提供補助(aid for young innovative enterprises); ●對服務流程及組織功能創新所提供之補助(aid for process and organisational innovation in services); ●對智慧財產提供諮詢或支援服務之補助(aid for innovation advisory services and for innovation support services); ●對中小型企業因晉用高級專業人員所需之貸款提供融資的補助(aid for the loan of highly qualified personnel for SMEs); ●對創新育成事業提供的補助(aid for innovation clusters)。 新的綱要架構同時希望可以改善歐盟對國家補助的管控機制,集中資源於管理對可能破壞競爭的案件,故綱要架構對於具有高度破壞競爭與交易風險的鉅額案件,詳細說明了執委會如何進行個案評估。
建立基因資料庫 台灣可行賽雷拉( Cel-era)公司創始人溫特克萊首度來台,他是四年前完成人類基因體解碼的靈魂人物,他建議可運用基因解碼技術,建立基因資料庫,解決台灣醫療資源浪費。 事實上,早在2004年2月行政院科技顧問組為追蹤研究國人常見疾病與基因之間的關係,宣布推動「台灣疾病與基因資料庫」建置計畫。希望透過該基因資料庫的建立,確實掌握國人致病基因,奠定基因治療基礎,除了有效節省醫療資源浪費,更可鎖定特有亞洲疾病為研發重心,作為生技產業發展的優勢利基。台灣人口數約有二仟多萬,且具有完整健全的全民健保及戶籍資料,再加上台灣生物科技產業技術的蓬勃發展,想要建立大型的基因資料庫技術性應相當可行。國外有冰島和英國等多國發展之經驗可參考。 由於涉及人權自主、個人隱私、安全保密、社會倫理、研究成果的利益分享、以及由誰來擔任執行單位等方面的爭議,加上目前國內法令規範不足,既有相關法令多為位階較低的指導性公告,確實有必要建置相關配套制度及法律,以協助該計劃落實執行與發展。
歐盟2014個人資料保護日,倡議資料可攜權及個資規範革新歐盟將2014年1月28日定為「2014個人資料保護日」(Data Protection Day 2014),倡議推動個人資料修法及規範革新,主要係位因應數位化時代,個人資料權利保護越形重要,並且為了強化保護線上隱私權利,歐盟執委會首於2012年1月25日所提出個人資料保護指令的修正草案─「保護個人關於個人資料處理及此等資料自由流通規章(一般資料保護規章)」(Proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL(General Data Protection Regulation));該修正草案於2013年6月進入歐洲議會、理事會及執委會的三方協商,同年10月21日歐洲議會公民、司法與內政委員會(Committee on Civil Liberties, Justice and Home Affairs)審議通過,若進程順利預計將於2014年獲得通過,並於2016年生效施行。 歐盟「2014個人資料保護日」會議中,特別提到此次修法,係為歐盟跨時代的個人資料保護規範革新工作,具有特別重要意義,並且倡議應對於資料可攜權(Right to Data Portability),明文法制化加以落實保障,包括加強資料當事人控制及近取個人資料的權利,資料當事人更容易近取(aceess)個人資料(第14、15條);資料當事人有資料可攜的權利(第18條),當資料處理是以電子化方法,且使用結構性、通用的格式時,資料當事人有權利可以取得該結構性、通用格式下的個人資料(第18條(1)),且更容易自不同服務提供者間移轉個人資料。 國際間對於「資料可攜」議題,正反意見均陳,並未達成共識。歐盟執委會提出個人資料保護指令的修正草案第18條,倡議將「資料可攜性」明文法制化,並要求資料蒐集、處理與利用者對以電子化方法持有的個人資料,需使用結構性、通用的格式,以便利並確保後續個人資料可攜性。此修正草案一提出,隨即引發國際間各重要國家的熱烈探討:有反對者認為,此舉無異將形成未來國際間貿易障礙;有贊成者從確保使用者權益觀點,認為未來智慧聯網(IoT)環境下,資料可攜性是不可避免的趨勢,賦予資料當事人法律權利,有助於個人資料的保護。各重要國家對歐盟修正草案立場及意見,值得加以探究,以觀察未來法制發展趨勢。
美國制訂「促進政府資訊開放」行政命令及推動「藍色按鈕倡議」計畫美國歐巴馬總統於2013年5月9日正式簽署「促進政府資訊開放並利機器讀取」行政命令(Executive Order 13642–Making Open and Machine Readable the New Defaut for Government Information),推崇聯邦政府過去釋出氣候、全球定位系統(GPS)等資訊對於私部門產業創新及新創事業(entrepreneurship and star-up)之正面影響,盼未來所有新增加的政府資料在資訊安全和隱私權雙重確保之前提下,將開放以可供機器可讀取之格式給公共大眾,帶動整體經濟正面循環發展。之前,美國推動聯邦政府資料開放政策,重要者為白宮科學技術政策辦公室(Office of Science and Technology Policy, OSTP)於2009年3月份啟動「開放政府倡議」(Open Government Initiative),民眾可透過「Data.gov」入口網站 ,取得高價值、機器可讀取之聯邦政府資料。 近年來,在公部門政府政策鼓勵導引下,不同的產業也逐漸發展出適用於特定產業的共同互通性標準(sectoral interoparability)。以醫療衛生領域為例,從2010年開始,歐巴馬總統乃宣布「藍色按鈕倡議」(Blue Button Initiative),病患得透過特定網頁(web-based)簡易下載其健康資訊(health information),並可供重複利用的格式下;同時,患者也可以選擇將該資訊分享給健康照護提供者(health care provider)、保險公司和信任的第三者(trusted third parties)。該倡議更挑戰軟體開發者(developer)在藍色按鈕的基礎上,開發更多的Apps軟體,使當事人更容易去管理掌控自身健康的狀況。在能源科技領域,近似於藍色按鈕倡議,白宮幕僚科技長Aneesh Chopra於2011年9月,也發起了「綠色按鈕倡議」(green button initaitive),挑戰美國境內大小事業單位(utilities)投入參與該倡議,研發一個機器可讀取之開放格式(a machine-readable open format),使消費者得透過連線網路重複近取之。 有鑒於網際網路開放的特性,且近年來來自外國網路攻擊不斷,於2013年2月份,NIST與國際間重要標準組織,如ISO、IEC和IEEE,首度就感應網絡(sensor networks)、機器對機器(M2M)和智慧聯網(IoT),提出一個跨界面之共通標準計畫(ISO/IEC/IEEE P21451-1-4 XMPP),該共通標準計畫內容包含: 封包傳輸(檢測)、全球獨特辨識、政策控制和加密,此共通標準得確保未來巨量資料領域資料近取之安全性 。