能源稅課徵 經濟部爭取三年緩衝

  財政部日前對外公布「能源稅條例」修正草案,由於課徵能源稅對產業的衝擊層面甚大,行政院最近邀集財經等部會及環保署協商「能源稅條例」草案。


  經濟部認為能源稅開徵應在能源價格合理化後再實施,且需採漸進式方式開徵,並主張應仿歐盟做法,給予業者至少二至三年的緩衝期,即
98 年之後再開徵。同時經濟部也建議參照歐美國家給予差別稅率,燃料油及煤炭能源稅,應給予工業部門較低稅率或免稅,以降低對產業的衝擊,否則製造業生產流程使用到煤及天然氣的業者都將受衝擊。另外,經濟部也應主張若要課徵能源稅,應同步取消平板玻璃、橡膠輪胎、電器及飲料等四類貨物稅及汽燃費,並取消空汙費與土汙費,以避免雙重課稅。


  能源稅的直接用意應是藉由租稅手段提高能源使用效益,間接才是充實國庫。我國許多能源相對便宜,以致部分中小企業在欠缺嚴謹工程管理的情況下,石油、水電等資源的使用或有浪費情形,因此祭出能源稅,重點應擺在提高能源使用的邊際效益,同時,政府亦應提出有效配套,以兼顧產業的國際競爭力。

相關連結
※ 能源稅課徵 經濟部爭取三年緩衝, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=479&no=57&tp=1 (最後瀏覽日:2025/04/04)
引註此篇文章
你可能還會想看
日本修訂《教育資訊安全政策指引》以建構安全的校園ICT環境

  日本文部科學省於2022年3月發布「教育資訊安全政策指引」(教育情報セキュリティポリシーに関するガイドライン)修訂版本,該指引於2017年10月訂定,主要希望能作為各教育委員會或學校作成或修正資訊安全政策時的參考,本次修訂則是希望能具體、明確化之前的指引內容。本次修訂主要內容如下。 (1)增加校務用裝置安全措施的詳細說明: 充實「以風險為基礎的認證」(リスクベース認証)、「異常活動檢測」(ふるまい検知)、「惡意軟體之措施」(マルウェア対策)、「加密」(暗号化)、「單一登入的有效性」(SSOの有効性)等校務用裝置安全措施內容敘述。 (2)明確敘述如何實施網路隔離與控制存取權的相關措施: 對於校務用裝置實施網路隔離措施,並將網路分成校務系統或學習系統等不同系統,若運用精簡型電腦技術(シンクライアント技術)則可於同一裝置執行網路隔離。另外,針對校務用裝置攜入、攜出管理執行紀錄,並依實務運作調整控制存取權措施,例如安全侵害影響輕微者則可放寬限制以減輕管理者負擔。

美國聯邦貿易委員會插手企業資訊安全引起爭議

  美國聯邦貿易委員會(Federal Trade Commission, FTC)於2013年8月29日對位於亞特蘭大的一家小型醫療測試實驗室LabMD提出行政控訴,指控LabMD怠於以合理的保護措施保障消費者的資訊(包括醫療資訊)安全。FTC因此依據聯邦貿易委員會法(Federal Trade Commission Act, FTC Act)第5條展開調查,並要求LabMD需強化其資安防護機制(In the Matter of LabMD, Inc., a corporation, Docket No. 9357)。   根據FTC網站揭示的資訊,LabMD因為使用了點對點(Peer to Peer)資料分享軟體,讓客戶的資料暴露於資訊安全風險中;有將近10,000名客戶的醫療及其他敏感性資料因此被外洩,至少500名消費者被身份盜用。   不過,LabMD反指控FTC,認為國會並沒有授權FTC處理個人資料保護或一般企業資訊安全標準之議題,FTC的調查屬濫權,無理由擴張了聯邦貿易委員會法第5條的授權。   本案的癥結聚焦於,FTC利用了對聯邦貿易委員會法第5條「不公平或欺騙之商業行為(unfair or deceptive acts)」的文字解釋,涉嫌將其組織定位從反托拉斯法「執法者」的角色轉換到(正當商業行為)「法規與標準制訂者」的角色,逸脫了法律與判例的約束。由於FTC過去曾對許多大型科技公司(如google)提出類似的控訴,許多公司都在關注本案後續的發展。

何謂「工業4.1J(Japan Industry 4.1J)」?

  自德國「工業4.0」,開啟所謂第4次工業革命以來,各國政府皆相繼投入資源進行相關計畫,如美國之「先進製造夥伴計畫(Advanced Manufacturing Partnership,AMP)」中國大陸之「中國製造2024」,以及我國之「生產力4.0」等等。   而日本不同於上述其他國家,日本版的工業4.0稱為「工業4.1J」,該計畫並非由國家來主導,而係由民間公司Virtual Engineering Community(VEC)及NTT Communications於2015年3月10日所啟動的一項實證實驗,旨在確認「工業4.1J」之各項技術要件,並且該項目成果非僅提供給VEC之會員,將對所有企業及公眾公開。而所謂的「4.1」表示安全級別比工業4.0更高一級,「 J」則表示源自於日本(Japan)。   日本之「工業4.1J」的運行架構說明如述:首先,將會利用控制系統蒐集相關數據;第二,在雲端平台上記錄及累積數據資料;第三進行即時分析;最後則是透過專家進行事件檢測、分析故障原因並恢復生產、提出安全改善建議等等。

歐盟執委會提出「具可信度之人工智慧倫理指引」

  歐盟執委會人工智慧高級專家小組(High-Level Expert Group on Artificial Intelligence)於2019年4月8日公布「具可信度之人工智慧倫理指引」(Ethics Guidelines For Trustworthy AI)。該指引首先指出,具可信度之人工智慧需具備三個關鍵特徵:(1)合法(Lawful):應遵守所有適用於人工智慧之法規;(2)合乎倫理(Ethical):確保人工智慧符合倫理原則與價值;(3)健全(Robust):自技術與社會層面觀之,避免人工智慧於無意間造成傷害。   該指引並進一步指出人工智慧應遵守以下四項倫理原則: (1) 尊重人類之自主權(Respect for Human Autonomy):歐盟之核心價值在於尊重人類之自由與自主,與人工智慧系統互動之個人,仍應享有充分且有效之自我決定空間。因此,人工智慧之運用,不應脅迫、欺騙或操縱人類,人工智慧應被設計為輔助與增強人類之社會文化技能與認知。 (2) 避免傷害(Prevention of Harm):人工智慧不應對人類造成不利之影響,亦不應加劇既有的衝突或傷害。人工智慧之系統運行環境應具備安全性,技術上則應健全,且確保不會被惡意濫用。此外,弱勢族群應於人工智慧運用中受到更多關注,並被視為服務對象。 (3) 公平(Fairness):人工智慧系統之開發、布建與利用,必須具備公平性。除了透過實質承諾與規範,進行平等與公正之利益與成本分配外,亦須透過救濟程序確保個人或特定族群不受到歧視與偏見之侵害,並可對人工智慧之自動化決策結果提出質疑,且獲得有效之補救。 (4) 可解釋性(Explicability):人工智慧應盡量避免黑箱(Black Box)決策,其系統處理程序須公開透明,並盡可能使相關決策結果具備可解釋性,分析特定訊息可能導致之決策結果,此外亦需具備可溯性且可接受審核。

TOP