美國眾議院於2013/10/22提出法案(Sensible Oversight for Technology which Advances Regulatory Efficiency Act of 2013,簡稱Software Act,HR3303),擬限制食品藥物管理局 (Food and Drug Administration,FDA)在與健康醫療有關軟體制訂規範的權限。 根據美國聯邦法典第21編第301條以下(21 U.S.C. § 301)規定,FDA對醫療器材擁有法定職權進行規範。FDA近來亦開始嘗試對醫療軟體APP制訂規範,包括附有生物識別裝置(如血壓監視器和照相機)、讓消費者可以蒐集資料、供醫生可遠距離進行部分檢測行為的行動設備。這項法案的支持者以為,FDA此舉將阻礙醫療創新,故擬透過Software Act界定FDA的規管權限。 這項法案主要增加了3個定義:醫療軟體(medical software)、臨床軟體(clinical software)和健康軟體(health software)。醫療軟體仍在FDA的管轄範圍內,但其他2類則否。惟本法案只確立FDA無權對資料蒐集類軟體進行規範,但對此類軟體得使用的範圍、或是否需另授與執照等議題並沒有著墨。提案者以為,後續應由總統和國會應共同努力,對臨床軟體和健康軟體制訂和頒佈立法,建立以風險為基礎的管制架構,降低管制負擔,促進病患安全與醫療創新。 所謂醫療軟體,指涉及改變身體(changing the body)的軟體。包括意圖透過市場銷售、供消費者使用,直接改變人體結構或功能的軟體;或,意圖透過市場銷售、供消費者使用,以提供臨床醫療行為建議的藥物、器材或治療疾病的程序;或其他不需要健康照護提供者參與的情境,但實施後會直接改變人體結構或功能的藥物、器材或程序。 僅從人體蒐集資料者,被歸類為臨床軟體(由醫療院所、健康照護提供者裝設)或健康軟體(由民眾自為)。兩者的區別,主要在由誰提供並裝設。 所謂臨床軟體,是醫療院所或健康照護提供者在提供服務時使用,提供臨床決策支援目的之軟體,包括抓取、分析、改變或呈現病患或民眾臨床數據相關的硬體和流程,但不會直接改變人體結構或任何功能。 根據Research2Guidance於2013年2月發表的調查報告(Mobile Health Market Report 2013-2017),目前在APPLE的APP Store上已有97,000個行動健康類的APP程式,有3百萬個免費、30萬個付費下載使用者。15%的APP是專門設計給健康照護提供者;與去年相比,已有超過6成的醫生使用平板提供服務。預測消費者使用智慧型手機上的醫療APP的數量,在2015年將達5億。這個法案的出現,外界以為,提供了科技創新者較明確的規範指引,允許醫療的進步和創新。
歐洲藥物管理局「臨床試驗資料公開與近用政策」(草案)之定案日期將延後歐洲藥物管理局(European Medicine Agency,EMA)於今年六月下旬起至九月底止,開放接受公眾針對該局所擬「臨床試驗資料公開與近用政策」草案(draft policy on publication and access to clinical-trial data)提出回饋意見。所有公眾建言都將由EMA加以檢視,並將成為上述政策草案正式定案前之參考。原本EMA預計在2013年年底即對上述政策草案拍版定案,然而,由於歐洲藥物管理局收到超過一千則來自四面八方、不同立場之公眾回饋意見,為求妥適、深入檢視、分析這些意見,EMA原訂之定案時程將被迫遞延。新的定案時間表最慢將於十二月中上旬公布。 根據上述「臨床試驗資料公開與近用政策」草案之現行版本(亦即提供公眾評論並回饋意見之版本),原則上,EMA所持有之臨床試驗資料,將依其類型之差異而適用不同的公開或近用標準。依照EMA之分類,試驗資料將被區分為(1)「公開後不會導致個資保護疑慮之試驗資料」、(2)「如經公開,可能產生個資保護疑慮之試驗資料」、(3)「內含商業機密資訊之試驗資料」等三大類。上述第三類之「內含商業機密資訊之試驗資料」不會受到此一政策草案之影響,第二類資料將有限制的公開與提供近用,至於第一類資料,則將公開於EMA網站上供公眾下載。
FDA發佈人工智慧/機器學習行動計畫美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
日本特許法有關職務發明報酬規定之新近發展趨勢企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。 修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。 上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。