日本經濟產業省召集的「氫能、燃料電池戰略協議會」(水素・燃料電池戦略協議会)於2023年6月6日發布2023年版的「氫能基本戰略」(水素基本戦略),此為日本於2017年首次提出「氫能基本戰略」後,依據近年國際社會2050淨零碳排之宣示,以及烏俄戰爭造成的能源供應危機等情勢變化,再次提出的新版氫能國家型戰略。 本戰略以一個S、三個E作為其氫能發展基本原則,即安全性(Safety)、能源保全(Energy Security)、經濟效益(Economic Efficiency)、環境(Environment);在確保使用安全性的前提下,期望透過發展氫能,實現「氫能社會」理想,兼顧能源供給穩定與經濟成長,同時對環境有所貢獻。基此,本戰略提出擴大氫供給、創造氫需求、建構大規模供應鏈、發展地區性氫能利用、推動技術革新、國際合作、促進國民理解等七項推動方向。 為強化氫產業競爭力,本戰略從製造、運輸、使用等三個面向著手,首先,確立2030年水電解裝置達15GW之目標,支援生產設備設置;其次,建置輸送管路等基礎設施,以降低運輸成本,並確保足夠的氫運輸船以供海上運輸使用;最後,於技術方面,加速燃料電池車、燃氫,以及以氫作為原料之製鋼、化學品製造等技術發展。 針對氫能安全性,則計畫擬定「氫能安全戰略」(水素保安戦略),從「氫安全性相關科學資料取得及共享」、「統一技術標準」、「第三方認證及技術機構之設立」、「人才培育」等面向,全面檢視並調整與氫供應鏈相關的法規範,以確保整體安全性。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟個人資料保護委員會提出關於資料主體接近使用其個人資料權利之指引歐盟《一般資料保護規則》(General Data Protection Regulation, GDPR)第15條為「資料主體之接近使用權(Right of access)」,其第1項規定「資料主體有權向控管者確認其個人資料是否正被處理」,資料主體並得知悉其個資處理之目的、所涉及之類型等事項。該條係為使資料主體在獲得充分、透明且容易接近之資訊,使其得更輕易的行使如資料刪除或更正等權利。 因條文在文字上具抽象性,就具體內涵仍須有一定基準,故歐盟個人資料保護委員會(European Data Protection Board, EDPB)於2022年1月18日,針對GDPR中之接近使用權提出指引(Guidelines 01/2022 on data subject rights - Right of access),闡明在不同的情況中,資料主體應如何向資料控管者(Data Controller)主張接近使用權,並且說明資料控管者針對此項權利之義務內涵。 就具體內容,該指引包含:接近使用權之範圍、資料控管者應向資料主體提供之資訊內容、資料主體請求資訊之格式、資料控管者應如何提供資訊、GDPR第12條第5項所稱「資料主體之請求明顯無理由或過度者」之概念為何。指引並製作流程圖,以便利資料主體輕易的了解向資料控管者主張權利之步驟。 而對於資料控管者,指引亦說明其應如何解釋與評估資料主體之請求、應如何回覆特定請求、限制接近使用權之例子。該指引旨在從各方面分析接近使用權,經由舉例與設想特殊情形,以求為該權利提供更精確之指導。
歐盟研究:應重視改善基因改造產品管理規範的區域性差異基因改造作物的商業化普遍在各地受到管理規範,如今全球即將步入上市階段的基因改造作物與日俱增,相反地在歐洲地區相關核准作業程序卻遲滯緩慢。這主要起因於各國家地區對於基因改造產品所採取管理方式與法律規範各有不同,相關產品的安全評估標準及法律審查程序也有所差異,因此目前基因改造作物產品雖然在同一時間內申請上市核准,之後仍難以取得全球各國家地區之核准。 今(2009)年7月,歐盟所屬之研究單位Joint Research Centre(JRC)指出基因改造作物產品的非同期性核准(asynchronous approval)將為全球農業市場交易帶來相關一連串的問題。根據JRC研究,某些國家地區如歐盟,採取全面禁止基因改造作物(“zero-tolerance policy”),立法禁止核准基因改造作物以進口商品之名義輸入,即便某些基因改造作物已在本國境內允許種植並且將其歸類為安全,但任何含有上述微量基因改造作物成分之農產品,也同樣遭歐盟禁止輸入,歐盟全面禁止基因改造作物產品之作法形同架設了一道產品交易的禁令。以過往經驗為例,因歐盟全面禁止基因改造作物之管理方式,已導致產品無法輸入,大幅影響該地區的動物飼料。 隨著全球基因改造作物種植面積及商業使用量增加的發展趨勢,未來恐將難以在全球市場中取得毫無添加基因改造作物的產品,尤其當這些基因改造作物是允許在其他國家境內種植,但卻未獲歐盟批准者。因此,相對於未添加基因改造作物產品之價格將因此上揚,而仰賴動物飼料進口輸入的歐盟則應多加關切此事。 為能降低含有微量基因改造作物商品所帶來的衝擊,JRC歸納「全球基因改造作物商業化流程研討會」中專家學者之意見,建議歐盟宜再次考量全面禁止政策之必要,或改以容許低含量基因改造作物產品之上市標準予以取代;其他建議則包括簡化核准程序,設立各國互相認可的基因改造作物風險評估方法,以及彈性落實國際食品標準委員會相關之規定,以期能減少日後基因改造作物產品非同期性核准之影響。