美國FDA(Food and Drug Administration)於2019年11月22日發布「保密證書(Certificates of Confidentiality, CoC)」指引草案。保密證書之目的在於防止研究人員在任何聯邦、州或地方之民事、刑事、行政、立法或其他程序中被迫揭露有關研究參與者可識別個人之敏感性資料,以保護研究參與者之隱私。保密證書主要可分為兩種,對於由聯邦所資助,從事於生物醫學研究、行為研究,臨床研究或其他研究,於研究時會收集可識別個人之敏感性資料之研究人員而言,保密證書會依法核發予該研究人員,稱為法定型保密證書(mandatory CoC);而對於從事非由聯邦所資助之研究的研究人員而言,原則上保密證書不會主動核發予該研究人員,惟當研究涉及FDA管轄之產品時,可由FDA自行裁量而核發保密證書,稱為裁量型保密證書(discretionary CoC),本指引草案旨在提供裁量型保密證書之相關規範。 FDA建議裁量型保密證書之申辦者先自問以下四個問題,且所有問題之答案應該皆為肯定:(1)申辦者所參與之人體研究是否收集可識別個人之敏感性資料?(2)申辦者是否為該臨床研究之負責人?(3)申辦裁量型保密證書之人體研究是否涉及受FDA管轄之產品的使用或研究?(4)申辦者之研究措施是否足以保護可識別個人之敏感性資料之機密性? 於FDA完成審查後,將向申辦人傳送電子回覆信件,表明是否核准裁量型保密證書。若結果為核准,則該電子回覆信件即可作為保密證書。該保密證書之接受者應執行法律所規定以及FDA於電子回覆信件中所要求之保證事項,以保護人體研究參與者之隱私。
歐盟智慧聯網研發推動平台報告,物聯網共創價值的六大支柱成功的物聯網(IOT)平台生態系統取決於多種因素,2017年4月3日歐盟智慧聯網研發推動平台( European Research Cluster on the Internet of Things)在物聯網活動平台分析(Analysis on IoT Platforms Adoption Activities)中提出六個成功的重要因素: 策略與利害關係人的參與(Strategy & Stakeholder Engagement):成功物聯網平台除了要製定良好的願景外,並讓主要利害關係人適當的參與系統策略,與整體政策格局保持一致性。 社群的支持(Community Support):社群支持程度決定了物聯網系統的吸引力,透過適當的的機制和工具,以有效地減少參與的障礙。 開放性(Ecosystem Openness):非常封閉的物聯網系統,吸引較少參與者。透過適當的開放以鼓勵利害關係人之參與,並減少進入之障礙。 技術的進步程度(Technology Advancement):越是被廣泛使用的技術及技術特徵,越可以顯著增加物聯網系統的吸引力,除了提高績效以外,並增加系統存續之可能性。 市場機制(Marketplace Mechanisms):透過市場機制可以取得用戶間的信任感,以增加參與的可能性,透過參與者價值交流進一步鼓勵參與。 包容性(Technology Inclusivity):物聯網系統很少是孤立的,必須考慮許多外部因素,如架構技術、物聯網設備、服務等。物聯網生態系統越包容其他流行技術,越有可能被使用者接受。
法國國民議會通過反仇恨言論立法提案法國國民議會(National Assembly)於2019年7月9日通過反仇恨言論立法提案,希望效仿德國社群媒體管理法(NetzDG),課予網路平台業者積極管理平台上仇恨言論(hate speech online)之責任。該提案希望透過立法要求大型網路平台及搜尋引擎,如Facebook及YouTube等,必須設置用戶檢舉管道,並於24小時內刪除以種族、宗教、性別、性取向或身心障礙為由之煽動仇恨或歧視性侮辱言論,否則將面臨高達全球營業額4%之罰款。 在主管機關方面,規劃由法國廣電主管機關「最高視聽委員會」(High Audiovisual Council, CSA)進行監管,網路平台業者必須向其提交仇恨言論之處理報告與相關數據。同時,平台業者應加強與法國司法系統的合作,取消違法用戶的匿名權利並提供相關證據資料,以利司法追訴。 2019年3月15日紐西蘭清真寺槍擊案之網路直播事件,讓各國警惕勿讓網路平台成為傳遞仇恨言論的工具。發起立法的法國議員Laetitia Avia表示,對抗網絡仇恨言論是場艱巨且長期的戰鬥,希望透過立法讓各方負起應有的責任,讓仇恨言論無所遁形,但反對者認為平台業者為了避免裁罰的風險,可能會對內容進行過度審查,相關自動化過濾技術也可能對言論自由產生不利影響。本立法提案仍待法國參議院完成審議。
日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)