本文為「經濟部產業技術司科技專案成果」
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
歐盟發布孤兒著作指令(2012/28/EU),期促進成員國數位典藏之流通運用為促進歐盟境內各成員國的典藏機構(圖書館、資料館、博物館等)之典藏數位化以及數位作品的流通,歐盟於2012年10月28日頒布Directive 2012/28/EU(俗稱孤兒著作指令),本指令允許典藏機構基於「公益」目的利用孤兒著作從事營利之商業行為,並要求各成員國應於2014年10月29日前完成國內法的轉換程序,本指令有以下特色: (一)界定適用之機構與標的:適用之機構包括各成員國境內為公共利益所建立的公有典藏機構,包括公共圖書館、教育機構、博物館、資料館、電影與錄音典藏單位、公共電視台等。適用標的亦限制在前述機構數位典藏之作品,包括傳統出版品之書籍與報刊雜誌,以及電影、影音與錄音作品等。此外,指令同樣適用於附著在其他作品或構成他作品一部分(如書中的一張照片)的著作物,以及未出版之作品,例如書信、手稿等。 (二)明確定義「勤勉尋找」(diligent search)之最低標準:根據指令第3條第2項規定,所謂「勤勉尋找」之標準可由各會員國自行界定,但至少要包括本指令附件所載之各類資料庫、法定送存處(legal deposit)、以及相關著作權集體管理組織等。 (三)確立孤兒著作狀態相互承認機制:當一項著作在特定會員國被視為孤兒著作時,該效力便及於整個歐盟。另外,本指令第3條第6項亦規定歐盟各成員國應當將孤兒著作之狀態回報給歐盟內部市場調何局(Office for Harmonization in the Internal Market)。 (四)得基於公益性質(public-interest missions)將孤兒著作為商業授權之利用:典藏機構得基於公益性質將孤兒著作為商業授權之利用,特別是為保存或復原典藏物、或提供文化或教育上之近用等,可與其他公、私部門共同利用孤兒著作從事商業授權行為,並將收益彌補因前述典藏數位化所耗費的成本。 從歐盟孤兒著作指令的立法緣由與內容來看,其主要目的係在於釋放公有數位典藏的能量,以便可以達到歐盟在2010年所設定之活絡數位單一市場之目標。另本指令為加速典藏機構針對孤兒著作釋出的配套措施,例如明確定義勤勉搜尋的範圍,以及典藏機構得基於公益性質而將孤兒著作為商業授權之利用等,亦值得我國借鏡。
日本經濟產業省公布創業支援計畫「J-Startup」最新獲選為新創企業之名單日本經濟產業省於2021年10月20日公布第3屆「J-Startup」新創企業獲選名單。本次共選出50間企業,產業所涉及領域包含醫療、數位轉型、能源、太空等。獲選的企業將獲得政府及合作的民間組織所提供之支援,例如協助國內外活動展出、援助研究開發、增加投標機會、商談與其他企業合作等,預期創造出新創企業的成功範例。 「J-Startup」新創企業之選拔分為二階段,第一階段是由具備創業經驗之推薦委員(推薦委員由頂級風險投資人、大企業中與創新有相關之人才、學術單位專家等人員組成)基於新創企業的經營理念、國際性、成長發展性、對於社會議題的應對措施等考量,推薦在全球市場快速發展、具備有領導日本創新潛力之新創企業。第二階段由第三方外部審查委員(律師、學術專家等組成)審查選拔程序後,確定「J-Startup」新創企業名單。 「J-Startup」於2018年6月是由日本經濟產業省、日本貿易振興機構(JETRO)、新能源產業技術綜合開發機構(NEDO)共同創立營運,目的為培養出活躍於全球之新創企業。第1屆「J-Startup」(2018年6月)選拔出92間企業,第2屆(2019年6月)選拔出49間企業,再加上今年度所選拔出之50間企業,目前為止共計有188間新創企業獲選為「J-Startup」(第1屆、第2屆獲選企業中,有3間企業已解散或被併購)。
日本企業陸續向開發中國家提供環保技術援助應中國鋼鐵工業協會(以寶山鋼鐵為首)之請,日本鋼鐵聯盟擬提供中國削減溫室氣體的環保技術。中國雖不在京都議定書約束的國家之列,急遽的經濟成長所造成的空氣污染已帶來嚴重的環境問題,日本鐵鋼聯盟於24日的委員會上正式決定技術援助的計劃,近期內將與中國討論相關細節。 日本鋼鐵業界自1990年度起,平均每年投注1200億日圓開發該產業的環保技術,目前業界「回收熔爐熱能轉供發電等能源節約技術」已經領先全球。日本鋼鐵業界2003年度換算成二氧化碳的溫室氣體排放量雖然已較1990年度減少6.4%,仍然未能達到京都議定書中要求減量10%的目標。 利用京都議定書的「彈性機制」,業界也可藉由跨國的技術援助,將國外減少的溫室氣體額度直接計入本國的額度之內。目前為止由日本政府核可的「彈性機制」計劃共15件,今年一月甫通過鹿島建設公司將馬來西亞廢棄物處理場的沼氣轉為電能的計劃,除此之外,東京電力公司和住友商事都分別在智利和印度有相關的環保計劃。