美國食品藥物管理署(U.S. Food & Drug Administration, FDA)在2021年1月12日發布有關人工智慧醫療器材上市管理的「人工智慧/機器學習行動計畫」(Artificial Intelligence/Machine Learning (AI/ML)-Based Software as a Medical Device (SaMD) Action Plan)。該行動計畫的制定背景係FDA認為上市後持續不斷更新演算法的機器學習醫療器材軟體(Software as Medical Device, SaMD),具有極高的診療潛力,將可有效改善醫療品質與病患福祉,因此自2019年以來,FDA嘗試提出新的上市後的監管框架構想,以突破現有醫療器材軟體需要「上市前鎖定演算法、上市後不得任意變更」的監管規定。 2019年4月,FDA發表了「使用人工智慧/機器學習演算法之醫療器材軟體變更之管理架構—討論文件」(Proposed Regulatory Framework for Modifications to Artificial Intelligence/Machine earning (AI/ML)-Based Software as a Medical Device (SaMD) - Discussion Paper and Request for Feedback)。此一諮詢性質的文件當中提出,將來廠商可在上市前審查階段提交「事先訂定之變更控制計畫」(pre-determined change control plan),闡明以下內容:(1)SaMD預先規範(SaMD Pre-Specification, SPS):包含此產品未來可能的變更類型(如:輸入資料、性能、適應症)、變更範圍;(2)演算法變更程序(Algorithm Change Protocol, ACP):包含變更對應之處理流程、風險控制措施,以及如何確保軟體變更後之安全及有效性。 根據「人工智慧/機器學習行動計畫」內容所述,「事先訂定之變更控制計畫」構想被多數(包含病患團體在內)的利害關係人肯認,並於相關諮詢會議當中提出完善的細部建言。FDA將根據收到的反饋意見,於2021年以前正式提出有關人工智慧/機器學習上市後監管的指引草案(Draft Guidance),並持續研究提高演算法透明度、避免演算法偏見的方法。
日本與東南亞國家協會共同發表關於智慧財產權聯合聲明於106年5月15、16日,在日本舉行第七屆「東南亞國家協會」(又稱ASEAN)與日本專利局的智慧財產權座談會,這次會議的目的,是以加強東南亞國家協會與日本的「智慧財產權商業環境」合作,並通過了日本與東南亞國家協會的聯合聲明。 一、背景 東南亞國家協會是日本繼美國與中國大陸後第三大進出口地,同時也是日本企業界未來短期、長期投資的目的地,日本企業看好將來在東南亞國家協會的業務發展。東南亞國家協會在2015年設立東協經濟共同體(AEC),其後並發表「東協經濟共同體(AEC)2025綜合戰略行動計畫」,根據計畫內容,討論智慧財產權相關議題。日本專利局藉此鼓勵日本企業於東南亞國家協會發展業務,並積極展開與東南亞國家協會智慧財產權工作小組(AWGIPC)的合作。 二、結果概要 配合「東南亞國家協會2016-2025智慧財產權行動計畫」,日本與東南亞國家協會共同確立了中、長期智慧財產權的合作方向: 更新並訂立專利手冊(即專利審查指南)。 東協暨東亞經濟研究院(ERIA)共同研究與預測未來在東南亞國家協會關於智慧財產權的申請數量並提出建議。 鼓勵簽署並加入其他國際組織。 健全人力資源開發及考核管理。 鼓勵智慧財產權商業化並重視智慧財產權的重要性。 加強智慧財產權執法機構間的相互合作。 透過此次日本專利局與東南亞國家協會的智慧財產權會議,日本將持續支持並致力於與東南亞國家協會在智慧財產權上的保護。
日本對未來2020年至2030年間網路基礎設施之預測日本總務省未來網路基礎設施研究會(将来のネットワークインフラに関する研究会)4月份針對日本人工智慧(Artificial Intelligence 簡稱AI)、物聯網(Internet of Things 簡稱IoT)、資訊及通訊技術(Information and Communication Technologies 簡稱ICT)等技術相對應之網路基礎設施做作出預測。 在2020年以後第五代通信技術(5G)、物聯網系統、高畫質通訊等技術相繼成熟及普及化,相關業者勢必發展出多樣化、高度專業化使用者需求之網路結構,而手機聯網系統從單純的資訊傳遞網路,逐漸變成社會系統之神經網絡(社会システムの神経網)。 物聯網服務目前係由專用終端設備,並根據特定的應用目的建構,但在未來的網絡基礎設施,可能出現如橫向合作應用的通用平台,到2030年左右物聯網服務中M2M(Machine to Machine,機器和機器之間的通訊)的佔有率估計將達到10%。 人工智慧網路技術不僅僅是虛擬化層網路(仮想化レイヤのネットワーク)之維護和操作,更是物理層面的網路(物理レイヤのネットワーク)資源的管理,AI仍然只擔任協助之工具。其中,物理網絡(物理ネットワーク)和邏輯網絡(論理ネットワーク)應分別處理,邏輯網絡將型成多層次化,將變得難以檢測故障和調查原因,但在安全和可靠的網絡基礎設施下,經營者使用AI技術仍然是沒有問題的。 由於雲端技術、通訊技術之提昇,非電信營運者進入網路經營之商業型態逐漸產生,型成網路使用者、資料提供者之多樣性及複雜性。網路流量方面,在2030年左右將超出100Tbps核心網絡所需的傳輸容量,達到以往的光纖的容量限制,將透過無線電接入技術進一步發展,補足不足的光學寬頻。然而,人們對於網路更快的通信速度、安全性及可靠性的功能需求是沒有改變的。