行政院以5年320億推動六項策略科技

  為展現對高科技產業的重視,即將於41舉行之行政院科技顧問會議年度會議,會議重點將鎖定「科技人才發展」與「下世代網路環境建構」。在「科技人才發展」方面,林政委逢慶表示,科技人才發展攸關台灣科技核心競爭力,政府必須進行中、長期人才資源規劃運用,放眼到2015年,政府將持續積極推展延攬海外科技人才的計畫;在替代役條例修正納入研發替代役後,未來投入科技的役男員額,將從目前國防訓儲每年3,500名逐年放寬到1萬人。


  另外,政府將在五年內提撥近
320億元,發展軟性電子、RFID(無線射頻)、奈米科技、智慧型機器人、智慧化車輛、智慧化居住空間等六大策略性生活科技產業,今年將先提撥58億元投資這些策略性產業上。此外 行政院科技顧問對於發展台灣成為全球奈米研發中心有高度期許,近日亦在行政院科技會報中確認,今年起到2010年的五年內,將投入200億元於奈米科技生活化相關產業上。這是行政院產業科技策略會議所訂六大策略性科技產業中,編列預算最大的一筆。

相關連結
※ 行政院以5年320億推動六項策略科技, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=497&no=57&tp=1 (最後瀏覽日:2025/12/06)
引註此篇文章
你可能還會想看
瑞士洛桑國際管理發展學院公布《2022年IMD世界競爭力年報》

  瑞士洛桑國際管理發展學院(International Institute for Management Development, IMD)於2022年6月15日公布《2022年世界競爭力年報》(IMD World Competitiveness Yearbook)(以下簡稱本報告)。本報告以「經濟表現」(Economic Performance)、「政府效能」(Government Efficiency)「企業效能」(Business Efficiency)和「基礎建設」(Infrastructure)四大指標(含333項子標)評比63個經濟體。評比結果:全球競爭力前5名依序為丹麥、瑞士、新加坡、瑞典與香港;而其他重要經濟體之排名,如臺灣第7、美國第10、中國第17、南韓第27與日本第34。   丹麥34年來首次位列第一,去(2021)年居首的瑞士則跌至第2名。究其原因,丹麥因公共債務與政府赤字的減少,其「經濟表現」大幅提升。至於新加坡,雖於2019年與2020年皆居於榜首,去年則滑落至第5名。對此,IMD主管Arturo Bris表示,新加坡嚴格的防疫政策,限制了國際服務與人員流動,致使去年的全球競爭力排名下滑。然新加坡今年排名上升係因「經濟表現」強勁,其「國內生產總值」增長,「國內經濟」、「國際貿易」和「科技基礎建設」等子標皆位居全球第一,但「經營管理」卻排名第14、「科學基礎建設」排名第16、「健康與環境」更排名第25,仍處於相對較後的位置。若欲提升排名重回榜首,新加坡政府需設法應對外部經濟發展所帶來的挑戰(如全球供應鏈中斷、商品價格上漲等)、協助仍受COVID-19疫情影響的行業復甦經濟,並幫助企業走向低碳未來等永續發展方面作改善。   而我國,由去年第8名進步至今年第7名,突顯我國在全球COVID-19疫情肆虐之情況下,整體競爭力仍獲國際肯定。政府亦將以本報告之評比結果為鑒,協助企業加強全球布局,並積極推動前瞻基礎建設、六大核心戰略產業、2050淨零排放等產業轉型升級,期盼能持續提升我國競爭力。

演算法歧視將適用於《紐澤西州反歧視法》

2025年1月9日美國紐澤西州檢查總長與民權部(Division of Civil Rights, DCR)聯合發布「演算法歧視指引」(Guidance on Algorithmic Discrimination and the New Jersey Law Against Discrimination),指出《紐澤西州反歧視法》(the New Jersey Law Against Discrimination, LAD)亦適用於基於演算法所衍生的歧視。 隨著AI技術日趨成熟,社會各領域已大量導入自動化決策工具,雖然它們能提高決策效率但也增加了歧視發生之風險。指引的目的在於闡述自動化決策工具在AI設計、訓練或部署階段可能潛藏的歧視風險,亦列舉出在各類商業實務情境中常見的自動化決策工具,並說明它們可能會如何產生演算法歧視。以下分別說明《紐澤西州反歧視法》適用範圍,以及與演算法歧視有關的行為樣態。 一、《紐澤西州反歧視法》之適用主體及適用客體 《紐澤西州反歧視法》禁止在就業、住房及公共場所等領域所發生的一切歧視行為,其適用主體相當廣泛,包含但不限於下列對象:雇主、勞工組織、就業仲介機構、房東、房地產經紀人、公共場所之經營或管理者、以及任何教唆或協助歧視行為之個人;而該法之適用客體亦有明確定義,為具有受保護特徵(如性別、族裔、身心障礙等)之自然人或法人。 此外指引特別說明,即便適用主體無意歧視、或其所使用之自動化決策工具係由第三方所開發,只要發生歧視行為依然違反《紐澤西州反歧視法》。這是因為《紐澤西州反歧視法》係針對歧視所帶來的影響進行規範,儘管無意歧視,其所帶來的影響並不一定比故意歧視還要輕微。 二、 歧視行為的三種樣態 1.差別待遇歧視 差別待遇歧視係指適用主體基於受保護特徵而對適用客體施予不同對待。舉例而言,若房東使用自動化決策工具來評估黑人潛在租戶,但不評估其他族裔的潛在租戶,則會因為其選擇性使用自動化決策工具而構成歧視。 2.差別影響歧視 差別影響歧視係指適用主體的政策或行為對適用客體造成不成比例的負面影響,且該政策或行為未能證明具有正當性、非歧視性、或不存在較少歧視性的替代方案,則該政策或行為構成歧視。例如,某商店利用臉部辨識技術來偵測過去曾有偷竊紀錄的顧客,但該系統對配戴宗教頭巾的顧客較容易產生誤判,此亦可能構成歧視。 3.未提供合理調整 合理調整係指身心障礙者、宗教信仰者、懷孕者以及哺乳者,在不會對適用主體造成過度負擔的前提下,得向其提出合理請求,以符合自身的特殊需求。以身心障礙員工為例,若雇主使用了自動化決策工具來評估員工的工作表現(例如監測員工的休息時間是否過長),在未考量合理調整的情況下,該工具可能會過度針對身心障礙員工進而構成歧視。 為減少演算法歧視發生頻率,「演算法歧視指引」特別闡述自動化決策工具可能會出現的歧視行為及歧視樣態。此份指引的另一個意義在於,縱使目前紐澤西州並沒有一部監管AI的專法,但仍可以利用現行的法律去處理AI帶來的種種問題,以利在既有的法律架構內擴充法律的解釋來回應新科技的挑戰,並達到實質管制AI的效果。

美國聯邦航空總署針對特殊類型無人航空器提出新的適航性準則

  美國聯邦航空總署(Federal Aviation Administration, FAA)於2020年11月23日針對10種特殊類型(special class)無人航空器提出新的適航性準則(airworthiness criteria),以納入更多聯邦法規第107篇(14 CFR Part 107)所無法涵蓋之複雜無人航空器應用類型,包括包裹運送(package delivery)。   FAA目前正針對其所提出之適航性準則蒐集公眾之意見,故將相關特殊類型之無人機應用申請案公告於聯邦公報(Federal Register)中,提供30天予公眾針對該申請案之適航性表示意見,後續正式公布該適航性準則時亦會將相關意見納入考量。   該適航性準則將成為特殊類型無人航空器之安全標準,並能夠為相關特殊類型之無人航空器取得型式安全審驗合格證明(type certificate)建立之參考準則之一。   該適航性準則主要適用於重量在5-89磅之電動定翼(fixed wing)與旋翼(rotorcraft)無人機。FAA說明,該特殊類型無人航空器若通過此準則,僅表示其符合該適航性準則所規範之類型,惟其是否能夠執行飛行任務,尚須檢視有否符合FAA相關操作規範,包括操作人員是否取得許可證、操作之空域是否為禁限航區等。

世界經濟論壇發布《人工智慧公平性和包容性藍圖》白皮書

  世界經濟論壇(World Economic Forum, WEF)於2022年6月29日發布《人工智慧公平性和包容性藍圖》白皮書(A Blueprint for Equity and Inclusion in Artificial Intelligence),說明在AI開發生命週期和治理生態系統中,應該如何改善公平性和強化包容性。根據全球未來人類AI理事會(Global Future Council on Artificial Intelligence for Humanity)指出,目前AI生命週期應分為兩個部分,一是管理AI使用,二是設計、開發、部署AI以滿足利益相關者需求。   包容性AI不僅是考量技術發展中之公平性與包容性,而是需整體考量並建立包容的AI生態系統,包括(1)包容性AI基礎設施(例如運算能力、資料儲存、網路),鼓勵更多技術或非技術的人員有能力參與到AI相關工作中;(2)建立AI素養、教育及意識,例如從小開始開啟AI相關課程,讓孩子從小即可以從父母的工作、家庭、學校,甚至玩具中學習AI系統對資料和隱私的影響並進行思考,盡可能讓使其互動的人都了解AI之基礎知識,並能夠認識其可能帶來的風險與機會;(3)公平的工作環境,未來各行各業需要越來越多多元化人才,企業需拓寬與AI相關之職位,例如讓非傳統背景人員接受交叉培訓、公私協力建立夥伴關係、提高員工職場歸屬感。   在設計包容性方面,必須考慮不同利益相關者之需求,並從設計者、開發者、監督機關等不同角度觀察。本報告將包容性AI開發及治理整個生命週期分為6個不同階段,期望在生命週期中的每個階段皆考量公平性與包容性: 1.了解問題並確定AI解決方案:釐清為何需要部署AI,並設定希望改善的目標變量(target variable),並透過制定包容性社會參與框架或行為準則,盡可能實現包容性社會參與(特別是代表性不足或受保護的族群)。 2.包容性模型設計:設計時需考慮社會和受影響的利益相關者,並多方考量各種設計決策及運用在不同情況時之公平性、健全性、全面性、可解釋性、準確性及透明度等。 3.包容性資料蒐集:透過設計健全的治理及隱私,確定更具包容性的資料蒐集路徑,以確保所建立之模型能適用到整體社會。 4.公平和包容的模型開發及測試:除多元化開發團隊及資料代表性,組織也應引進不同利益相關者進行迭代開發與測試,並招募測試組進行測試與部署,以確保測試人群能夠代表整體人類。且模型可能隨著時間發展而有變化,需以多元化指標評估與調整。 5.公平地部署受信任的AI系統,並監控社會影響:部署AI系統後仍應持續監控,並持續評估可能出現新的利益相關者或使用者,以降低因環境變化而可能產生的危害。 6.不斷循環發展的生命週期:不應以傳統重複循環過程看待AI生命週期,而是以流動、展開及演變的態度,隨時評估及調整,以因應新的挑戰及需求,透過定期紀錄及審查,隨時重塑包容性AI生態系統。   綜上,本報告以包容性AI生態系統及生命週期概念,期望透過基礎設施、教育與培訓、公平的工作環境等,以因應未來無所不在的AI社會與生活,建立公司、政府、教育機構可以遵循的方向。

TOP