新興產業五年免稅優惠 未來擬改採總量管制

  鑑於促進產業升級條例 2010 年底屆滿,且立法院在去年底通過所得基本稅額條例(即最低稅負制)時,同步做成附帶決議要求,財經兩部必須在今年年底前完成促產條例減免優惠的檢討,財經兩部已經展開促產條例與相關子法規的修正方向檢討會議, 未來促產條例該不該限縮對產業別的獎勵項目,面對產業持續對外投資的趨勢,租稅獎勵工具是不是該增列「創造就業」指標,做為未來獎勵項目等,都是修法的考量方向之一。


  目前促產條例的主要租稅優惠有兩種,除投資抵減之外即為五年免稅,財政部統計,民國
90 年的抵稅總額只有 547 億元,其中科技業享有的減稅優惠就有 276 億元;至 93 年時,產升條例的抵稅總額已經暴升至 1,694 億元,僅高科技業者就抵掉 1,096 億元稅捐。財經兩部預估, 94 年的抵稅額將突破 2,000 億元。由於產業五年免稅優惠被認為過於浮濫,財經兩部正研商未來新興重要策略性產業享有五年免稅的減稅優惠,將採總量管制,企業享有的五年免稅優惠,改朝配額制進行「專案許可」管理,配額一滿即不再提供免稅。


  目前促產條例中有關租稅獎勵的認定,採較消極的作法,僅訂定一些適用條件,只要符合促產條例揭櫫或獎勵的產業升級研發或投資在促產條例獎勵的新興策略產業,都適用租稅優惠。業者只要據此向經濟部提出申請,經濟部依慣例,即發給免稅證明。但財政部要求未來應調整為專案許可制,除了基本資格規定外,經濟部應該再成立審查委員會,就每個產業租稅優惠,訂出總量管制,據此准駁。



  所謂「專案許可」的總量管制措施,財經兩部初步交換的意見是指,現在明列在新興重要策略性產業五年免稅辦法中的九大產業、
305 項免稅產品,都要依據發展成熟度,訂出適用免稅的家數。家數額滿,同一產業、同性質產品,即使符合五年免稅條件,也不再提供租稅優惠。

相關連結
※ 新興產業五年免稅優惠 未來擬改採總量管制, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=508&no=66&tp=1 (最後瀏覽日:2026/02/22)
引註此篇文章
你可能還會想看
墨西哥聯邦資料保護法生效

  墨西哥的聯邦資料保護法在二0一0年四月經墨西哥國會通過後,已於同年七月六日生效。這個新法旨在保護個人的隱私權並強化個人對自身資訊的掌控。與我國新近通過的個人資料保護法相同,墨西哥的這個新法所規範的範圍也包括了私部門對個人資料的蒐集、處理與利用。   在新法通過之後,原本的聯邦公共資訊近用機構(Federal Institute for Access to Public Information),亦擴張執掌並更名為聯邦公共資料近用及資料保護機構(Federal Institute of Access to Information and Data Protection)。在新制下,該機構將在原有負責事務外,另肩負起監督私部門就個人資料保護的相關事務。   此外,該法設計了一個雙重的監督機制:當資料的蒐集、處理或利用人,也就是所謂的資料控制者(Data Controller)出現可能違反聯邦資料保護法的狀況,將先由各相關部門的主管機關,例如主管經濟事務的機關或主管交通事務的機關來介入處理,而非由聯邦公共資料近用及資料保護機構立刻介入。

論政府資料探勘應用之個人資料保護爭議

下一個要控告的是…其它所有公司?

  Eolas,一家由加州大學資助成立的軟體技術研發公司,於1999年控告微軟侵犯了一個關於瀏覽器技術的專利 – US 5,838,906。該專利所揭露的技術讓微軟的IE瀏覽器得以嵌入互動式內容的外掛(plug-in)程式。2003年,美國芝加哥法院認定微軟侵犯906專利,並判決微軟必需賠償Eolas及加州大學5.21億美元。2007年,微軟終於暫時與Eolas達成和解,但兩家公司都不願透漏和解的內容。     美西時間2009年10月6日上午,Eolas大動作地控告包含科技業的Adobe、Amazon、Apple、eBay、Google、Sun Microsystems、Texas Instruments、Yahoo、YouTube,以及非科技業的Citigroup、JPMorgan Chase …等共22家公司,侵犯上述906專利以及其所衍生的US 7,599,985專利。Eolas表示:「985專利是 906專利的延續,其所揭露的技術能讓網站透過附加元件和Ajax網頁開發技術的使用,為其線上服務加入完全互動式的嵌入應用軟體。」     此外,Eolas總裁Michael Doyle博士也表示:「我們只想獲得公平的對待。本公司在15年前就已經研發並廣泛的展示這些技術。使用本公司的技術來營利且未付出合理報酬的情形對本公司並不公平。」 至於被控告的大多數公司目前都尚未做出正式的回應。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP