發展階段支出可列為資產

  過去高科技企業或生化公司的研發專案,公司經常認為專案已成熟,可認列為無形資產,以分成幾年攤銷,不致影響損益;但會計師卻可能認為,其無技術可行性或者無使用和出售可能,仍主張認列為費用。


  第三十七號會計公報
「無形資產的會計處理」 新近出爐,就無形資產清楚給予定義,並解釋如何進行會計處理與鑑價。其中最特別的是,第三十七號公報首次區分「研究」和「發展」階段的不同,發展階段有可能資本化。資本化最大的影響是,支出可以列為資產,不會影響損益,研究型企業的資產負債、損益表也將更為精準。


  舉例來說,生化、製藥業者因研究期很長,所有研發期間的投入,過去都須列為費用,導致獲利被明顯稀釋;未來根據三十七號公報,企業專案計畫接近商品化的發展階段,就可以資本化,此時的損益表上費用項目,就不會那麼高,
因此,「發展」階段可列為資產,有助鼓勵科技業者增加研究發展經費的投入。


  至於企業併購所產生的購買價格和被併公司淨值之間的溢價,過去通常以商譽處理,不過在
37 號公報上路後,會計師建議不應再把溢價直接當作商譽來處理,此乃因第 37 號公報所稱的無形資產,並不包含商譽,且必須具有「個別可辨認性」。因此,併購溢價應該區分為商譽和無形資產兩者,其後續評價對企業也較為有利。


  此外會計業者也表示,促產條例中對研發投抵的認列,有可能受到三十七號公報的影響,需要做調整,這部分有待財政部進ㄧ步規範清楚。

相關連結
※ 發展階段支出可列為資產, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=509&no=55&tp=1 (最後瀏覽日:2025/11/30)
引註此篇文章
你可能還會想看
從歐洲法院實務看資料保護在智慧聯網時代下發展-以資料保存指令無效案和西班牙Google案為例

良好的隱私權實踐工作有助於強化企業競爭力

  當含有大量個人敏感性特質個資之郵件不小心發送到陌生人的電子信箱時,將可能對當事人帶來無法預估的損害。加拿大隱私委員Daniel Therrien在國際隱私日時(1/28)提醒各企業,不要忽略隱私控管工作對企業競爭力帶來之影響。然這樣的理念不僅僅只適用在大型的企業,加拿大有98%的企業員工少於100人,對於這些成千上萬的小規模企業而言更是重要。   Daniel Therrien說:「我能理解資源有限的小規模企業每天面臨高壓的業務需求,但就相關反饋資料顯示,加拿大當地居民較傾向與具有良好隱私實踐工作之企業進行交易。」因此,良好的隱私實踐工作不僅是有助於消費者,更可協助企業符合加拿大個人資料保護與電子文件法(Personal Information Protection and Electronic Documents Act)之規定。   為協助小規模企業採取積極措施,以保障消費者資料及隱私不被外洩,提高競爭力,加拿大提供相關關鍵步驟供企業參考:(1)不逾越產品或服務目的之資料蒐集;(2)提供顧客清晰易懂之隱私權政策,以便顧客了解資料為何被蒐集,及如何處理、利用;(3)了解蒐集哪些資料、資料儲存期間及方式、有權限接觸之人及刪除方式; (4)對員工進行隱私保護教育訓練;(5)除非必要,否則請避免蒐集如健康狀況、財務資訊等具敏感性之資料;(6)企業應設置窗口或指定專人,針對顧客權利主張或提出與隱私有關之疑問時進行回應。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

Google提供免費大量的專利及商標資料

  美國專利商標局(下稱USPTO)於6月2日和Google簽訂一協議,為期兩年Google將免費協助USPTO提供超過10TB(terabytes)大量的專利及商標相關資訊,提供使用者一次下載大量資料。其下載網站為http://www.google.com/googlebooks/uspto.html,該網站載明,所有的原始資料都來自於USPTO,Google未修改任何資料,只將檔案轉為zip壓縮檔。   早期專利及商標的資料是由使用者付費後方可由政府的DVD取得,所以公司往往花費龐大的費用在於取得所需要的資料。   USPTO表示,IP群體渴望USPTO可提供大批機器可閱讀的格式,然而USPTO未具備相關的技術能力。目前此協議是過渡的解決方案,USPTO正發展策略,希望未來能讓合作承包商獲得大量專利商標相關資料,並提供給大眾使用。   Google工程經理Jon Orwant表示,Google非常高興能與USPTO合作,以促進專利及商標資料更具存取性(accessible)及有用性,更重要的為,使公開的資料更容易蒐集與分析。   為可經由Google下載相關專利及商標資料,包括已獲證圖像(grant images),已獲證全文(grant full text),已獲證目錄資料(grant bibliographic data),已公開申請案(published applications),轉讓(assignment),維護費用事項(maintenance fee events),USPTO Red Book及分類資料(classification information)等。USPTO表示,未來將與Google再合作提供額外的資料,包括專利及商標申請歷史檔案及其相關資料。

TOP