歐盟提出設立歐洲技術研究院(European Institute of Technology, EIT)之規劃草案

  歐盟在最新一期的研發剛要計畫( The Seventh Framework Proposal )中,除了持續以計畫補助方式推動歐盟的研發能力外,最值得注意者乃有關設立「歐洲技術研究院」( European Institute of Technology, EIT )的規劃。最近歐盟執委會已經提出 EIT 設立的法源基礎草案,根據目前規劃, EIT 旨在吸引產學研各界菁英加入,肩負打破產學研界間之藩籬之使命,未來 EIT 除為產學研合作之參考模式外,並將扮演歐洲地區創新、研究與高等教育之菁英領航者( a flagship for excellence ),期使歐盟得更有效率地面對全球化及知識經濟社會所帶來之挑戰。


  就組織面而言,
EIT 係整合由上而下及由下而上兩種組織結構: EIT 本身具有獨立之法人格,其內部除設置管理局( Governing Board , GB )監督組織運作外,並有約六十位常設之科學及職員人力;另 EIT 將由數個知識及創新社群( Knowledge and Innovation Communities, KICs )組成,各 KICs 代表不同區域之大學、研究組織與企業,各 KISs EIT 以契約規範彼此間的權利義務關係;至於各個 KICs 的組織結構,以及其如何達到契約目的,則交由其自治。目前歐盟執委會規劃在 2013 年以前建構約六個 KICs ,預計在此以前, EIT 需要來自公私部門總計約 24 億歐元( € 2.4 bn )的經費資助。


  由於
EIT 的設立尚須經過歐洲議會及歐盟理事會同意,若執委會目前所提出的設立規劃草案順利取得前述兩機構同意,預計 EIT 將可能從 2008 年起正式運作,並在 2010 年以前完成兩個 KICs 的設立。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟提出設立歐洲技術研究院(European Institute of Technology, EIT)之規劃草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=514&no=57&tp=1 (最後瀏覽日:2026/02/11)
引註此篇文章
你可能還會想看
美國佛羅里達州「基於保險目的之基因資訊法」最新修正於2020年7月1日正式施行

  美國佛羅里達州州長於2020年6月30日簽署「基於保險目的之基因資訊法」(Genetic Information for Insurance Purposes)法律修正案,並於2020年7月1日正式生效施行。本次「基於保險目的之基因資訊法」修正重點有二: 將「人壽保險」和「長期照護保險」保險人納入「禁止僅根據個人基因資訊即取消、限制、拒絕承保或設定不同保險費費率」之列; 明確規定醫療保險、人壽保險及長期照護保險之保險人,不得基於保險目的,向要保人、被保險人索取基因檢測結果,或要求要保人、被保險人須完成基因檢測後方同意核保。   同時,本次「基於保險目的之基因資訊法」修正理由亦明確說明:禁止醫療保險、人壽保險及長期照護保險之保險人利用基因檢測結果,並非禁止保險人依據醫療紀錄和醫療診斷結果進行核保或計算保險費費率,以此釋疑保險人對此次修正之擔憂。   美國聯邦參議院於2008年即通過「基因資訊平等法」(Genetic Information Nondiscrimination Act of 2008, GINA),惟「基因資訊平等法」僅禁止醫療保險保險人利用基因資訊進行核保,並未禁止其他類型之保險人。美國佛羅里達州本次修正「基於保險目的之基因資訊法」將人壽保險和長期照護保險一併納入規定,是全美首次擴大禁止利用基因資訊進行核保之保險類型。

什麼是「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)?

  為重塑美國先進製造技術領導地位,發展創新研發與就業,美國總統歐巴馬陸續啟動先進製造國家戰略計畫、先進製造夥伴計畫(Advanced Manufacturing Partnership, AMP)與國家製造創新網絡(National Network of Manufacturing Innovation, NNMI)等框架計畫,並於2014年10月由美國總統執行辦公室和科技顧問委員會發布「先進製造夥伴2.0」(Advanced Manufacturing Partnership 2.0, AMP2.0)。   其中新版的先進製造夥伴計畫,除續行原先之計畫目標,例如:對於「研發技術政策形成」、「區域創新機構」與「全國製造創新網絡」等要項外,「先進製造夥伴2.0」框架強調「製造業資源如何有效匯集」,另透過「組織角度設計」、「法制環境建構」與「商業化運用促進」等面向提出具體執行建議。

日本發布《資料品質管理指引》,強調歷程存證與溯源,建構可信任AI透明度

2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

人工智慧即服務(AI as a Service, AIaaS)

  人工智慧即服務(AIaaS)之定義為由第三方提供人工智慧(AI)外包服務,其可使個人和公司基於各種目的進行AI相關實驗,同時毋須於初期即大規模投資或承受高度風險。著名之四大AIaaS供應商為Amazon AWS雲端運算服務、Microsoft Azure 雲端運算平台與服務、Google雲服務、以及IBM雲服務。   AIaaS之優點主要有:(1)降低成本:一般公司無須投資軟體、硬體、人員、維護成本以及不同任務之修改成本,AIaaS供應商可供應不同之硬體或機器學習供公司嘗試運用。(2)即用性:AIaaS供應商提供之AI服務為即用性,無須太多專家介入修改即可使用。(3)可擴展性:可由較小之項目開始試驗,逐步擴張調整服務,因此具有戰略靈活性。然而,AIaaS亦有以下潛在缺點:(1)降低安全性:公司必須交付大量資料給AIaaS供應商,因此資料之機密保護與預防竄改即為重要。(2)增加依賴度:若發生問題時,必須等待AIaaS供應商進行處理。(3)降低透明度:由於是即用性之AI服務,對於內部演算法之運作則屬於未知之黑盒子領域。(4)限制創新:因AIaaS供應商所供應之AI服務需一定程度之標準化,因此限制公司創新發展之可能。

TOP