IBM公司在2日拉斯維加斯舉行世界夥伴(PartnerWorld)會議時,宣布提倡開放原始碼創新的新措施,包括成立求職應徵者資料庫,以及一項電子學習計畫。這座資料庫預定今年第三季推出,屆時會把具有開放原始碼技術的大學生所投的履歷表一一編列成目錄。想被納入資料庫的資格,包括曾經參加IBM校園人才培訓計畫(Academic Initiative)中級程度以上,並通過IBM開放原始碼專業資格考試的人士。該資料庫提供IBM的企業客戶與商業夥伴檢索。起初,此資料庫只涵蓋北美洲地區,但IBM打算將來擴大推廣到世界其他地區。
該公司也將透過提供IBM校園人才培訓計畫,提供各校所需的中介軟體及硬體,而Hubs計畫本身不打算收費,或只酌收少許費用。第一座這種中心預定春季在德州A&M大學成立。
IBM另外在PartnerWorld宣布,計劃今年與商業夥伴共同成立100座新的「創新中心」( innovation centers)。藍色巨人先前已承諾投資1.5億美元開辦這類中心,讓系統整合業者、獨立軟體公司、附加價值流通業者以及解決方案服務提供者藉此取得IBM的技術與設備,以協助他們測試並最佳化自家產品。其構想是協助這些夥伴加速產品上市,並降低產品開發費用。自2004年推出以來,IBM已在北美和歐洲成立大約40座這種中心。
本文為「經濟部產業技術司科技專案成果」
英國商業、能源及產業策略部(Department for Business, Energy and Industrial Strategy, BEIS)於2022年11月16日發布行政命令,以國家安全為由要求登記於荷蘭的中資公司Nexperia BV出售其於2021年7月收購之Nexperia Newport Limited(NNL)(原Newport Wafer Fab)至少86%的股份。 NNL擁有英國最大的晶圓製造工廠,其每月生產約32,000片晶圓,並大多出口至亞洲用以生產半導體。今(2022)年5月英國政府發現中國政府擁有Nexperia BV的母公司聞泰科技大約30%之股份後,即依《2021年國家安全與投資法》(National Security and Investment Act)第26條調查Nexperia BV於2021年7月收購NNL之行為,並認為該行為恐使NNL的半導體生產技術與知識(technological expertise and know-how)外流至中國,進而損害英國利益。同時,該行政命令亦提及NNL工廠位置靠近英國重要之南威爾斯半導體產業聚落,若讓Nexperia BV繼續經營該工廠,將使Nexperia BV能輕易的接觸相關生產技術與知識,佐以Nexperia BV母公司與中國政府的關係,恐有危害英國國家安全之虞。 Nexperia BV表示將提出訴願以推翻該行政命令。惟英國下議院外交事務專責委員會(Foreign Affairs Select Committee)主席表示,英國不會將關鍵基礎設施轉移給一家與中國政府有明確往來的公司,以確保其戰略資產不會因短期利益而落入獨裁國家手中;並補充說明,此一決定亦代表英國政府將更重視國家安全,同時避免具有領先地位的科技公司與研究落入競爭對手。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
荷蘭資料保護局:Google隱私權政策違反該國資料保護法荷蘭資料保護局(Data Protection Authority, DPA)歷經長達七個月的調查,於2013年11月28日發布新聞稿,聲明Google違反該國資料保護法,因其未適當告知用戶他們蒐集了什麼資料、對資料做了些什麼事。 DPA主席Jacob Kohnstamm表示:「Google在未經你我同意的情形下,對我們的個人資料編織了一張無形的網,而這是違法的。」調查報告援引了Google執行長Eric Schmidt在2010年一場訪談中所說的話:「你不用鍵入任何字,我們知道你正在什麼地方、去過什麼地方,甚至或多或少知道你在想些什麼。」。 調查顯示Google為了展示個人化的廣告及提供個人化的服務,而將不同服務取得的個人資料加以合併,如搜尋記錄、所在位置及觀看過的影片等。然而,從用戶的觀點來看,這些服務係基於全然不同的目的,而Google亦未事先提供用戶同意或拒絕的選項。依照荷蘭資料保護法的規定,Google合併個人資料前,應經當事人明示同意,而該同意無法藉由概括(隱私)服務條款取得。針對DPA的聲明,Google回應他們已經提供用戶詳細資訊,完全符合荷蘭法律。 DPA表示將通知Google出席聽證會,就調查結果進行討論,並決定是否對Google採取強制措施。但是,從Google的回應看來,他們不太可能在聽證過後改變心意。以先前Google街景車透過Wi-fi無線網路蒐集資料的案例為鑑,Google(市值達3500億美元)若繼續拒絕遵循,將有可能面臨高達1佰萬歐元的罰鍰。
日本內閣府公布生成式AI初步意見彙整文件,提出風險因應、應用及開發兩大關注重點日本內閣府於2023年5月26日召開第2次「AI戰略會議」(AI戦略会議),並公布「AI相關論點之初步整理」(AIに関する暫定的な論点整理)。鑒於AI對於改善國人生活品質、提高生產力無疑有相當助益,考量生成式AI甫問世,社會大眾對其潛在風險尚心存疑慮,內閣府遂以生成式AI為核心,延續先前已公布之「AI戰略2022」(AI 戦略 2022)、「以人為中心的AI社會原則」(人間中心の AI 社会原則),以「G7廣島峰會」(G7広島サミット)所提出之願景—「符合共同民主價值的值得信賴AI」為目標,提出「風險因應」及「應用與開發」兩大關注重點,供政府有關部門參考之同時,並期待可激起各界對於生成式AI相關議題之關注與討論: 一、風險因應:AI開發者、服務提供者與使用者應自行評估風險並確實遵守法規及相關指引;政府則應針對風險應對框架進行檢討,對於已知的風險,應先以現有的法律制度、指引與機制進行處理,假如現有法制等無法完全因應這些風險,則應參考各國作法盡速對現行制度進行修正。 AI的透明度與可信賴度於風險因應至關重要。若能掌握AI學習使用哪些資料、所學習資料之來源、AI如何產生結果等,就能針對使用目的選擇適合的AI,也較易因應發生之問題,並避免AI產生錯誤結果或在對話中洩漏機密資訊等。對此,本文件呼籲AI開發者及服務提供者依據現行法令和指引主動揭露資訊,政府則應對透明度和可信賴度相關要求進行檢討,並應依普及程度及各國動向對既有的指引進行必要之修正。 二、應用與開發:本文件建議政府部門積極使用生成式AI於業務工作上,找出提升行政效率同時不會洩漏機密之方法,並向民眾宣導AI應用之益處與正確的使用方式,以培養民眾AI相關技能與素養,藉以更進一步建構AI應用與開發之框架,如人才培育、產業環境準備、相關軟硬體開發等。