FairFax媒體出版公司是澳洲財經評論(Australian Financial Review,以下簡稱AFR)報紙的出版商,控告Lexis Nexis資料庫所提供的ABIX服務,提供不同的來源的每日新聞標題和摘要,包括AFR的新聞),是侵害FairFax新聞標題的著作權,同時,FairFax要求Lexis Nexis停止使用這些文字。
澳洲聯邦法院認為:1.著作權法不保護新聞標題,因為新聞標題太過簡短;2.證據顯示新聞標題並不能做為共同著作的一部分;3.新聞標題非整篇新聞最實質的部份。4.因為LexisNexis所使用的新聞標題可以構成合理使用。澳洲著作權法中,依據使用的性質與目的若使用新聞報導內容,是可以作為合理使用的主張。也就是說即使新聞標題受到著作權法保護,但LexisNexis仍可以主張合理使用,不會有侵害著作權的疑慮。
法官Annabelle Bennet表示:「新聞標題普遍來說就如同書名,太簡單且太短是不能受到著作權法中的語文著作保護。新聞標題的功能像是一篇文章的篇名,也像針對主題用濃縮的方式簡短的敘述,就如同像是一本書的書名長度。普遍來說,新聞標題太過簡短以致於不能被認為是語文著作,就像是標識(LOGO)在著作權法的評價上不夠重要以致於不能作為美術著作,即使這些是花費技能和勞力所創造的。
美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。
談業界控管奈米風險之自主管理機制-以杜邦公司奈米風險架構為中心 政府重申並未放寬輸往中國大陸半導體晶圓製程設備之出口管制由於國際出口管制組織「瓦聖那協議」( Wassenaar Arrangement,WA)於去年(93)底修訂半導體晶圓製程技術水準之出口管制規定,由0.35微米放寬為0.18微米;國貿局為配合「瓦聖那協議」之修訂,亦於今年9月公告半導體晶圓製程技術之出口管制修正為0.18微米。 然,我國半導體晶圓製造廠商申請赴中國大陸投資,主要依據經濟部之「在大陸地區投資晶圓廠審查及監督作業要點」辦理,其中第四點申請要件明顯規定「大陸投資事業製程技術限於0.25微米以上」。此外,在國貿局「限制輸出貨品總彙表」更有規範半導體晶圓製造等相關設備之輸出規定121:需要有國貿局簽發輸出許可證;輸出規定488:(一)輸往大陸地區者,應檢附經濟部投資審議委員會核准投資文件;輸往大陸以外地區者,應檢附保證絕不轉售大陸地區之切結書。(二)外貨復運出口者,另檢附原海關進口證明文件。(三)屬戰略性高科技貨品列管項目者,除應申請戰略性高科技貨品輸出許可證,並檢附上述文件外,應另依戰略性高科技貨品輸出入管理辦法規定,檢附下列文件:1、進口國核發之國際進口證明書、最終用途證明書或保證文件。2、外貨復運出口者,如原出口國政府規定需先經其同意者,應另檢附原出口國政府核准再出口證明文件;其於原進口時領有我國核發之國際進口證明書、最終用途證明書或保證文件者,應再檢附該等文件影本。 國際貿易局強調,我國目前開放半導體晶圓製程技術輸往中國大陸仍限為0.25微米以上,並未放寬輸往中國大陸之出口管制。
歐盟「人工智慧法」達成政治協議,逐步建立AI準則歐盟「人工智慧法」達成政治協議, 逐步建立AI準則 資訊工業策進會科技法律研究所 2023年12月25日 隨著AI(人工智慧)快速發展,在各領域之應用日益廣泛,已逐漸成為國際政策、規範、立法討論之重點。其中歐盟人工智慧法案(Artificial Intelligence Act, AI Act,以下簡稱AIA法案)係全球首部全面規範人工智慧之法律架構,並於2023年12月9日由歐洲議會及歐盟部長歷史會達成重要政治協議[1],尚待正式批准。 壹、發佈背景 歐洲議會及歐盟部長理事會針對AIA法案已於本年12月9日達成暫時政治協議,尚待正式批准。在法案普遍實施前之過渡期,歐盟執委會將公布人工智慧協定(AI Pact),其將號召來自歐洲及世界各地AI開發者自願承諾履行人工智慧法之關鍵義務。 歐盟人工智慧法係歐盟執委會於2021年4月提出,係全球首項關於人工智慧的全面法律架構,該項新法係歐盟打造可信賴AI之方式,將基於AI未來可證定義(future proof definition),以等同作法直接適用於所有會員國[2]。 貳、內容摘要 AIA法案旨在確保進入並於歐盟使用之AI人工智慧系統是安全及可信賴的,並尊重人類基本權利及歐盟價值觀,在創新及權利義務中取得平衡。對於人工智慧可能對社會造成之危害,遵循以風險為基礎模式(risk-based approach),即風險越高,規則越嚴格,現階段將風險分為:最小風險(Minimal risk)、高風險(High-risk)、無法接受的風險(Unacceptable risk)、特定透明度風險(Specific transparency risk)[3]。與委員會最初建議版本相比,此次臨時協定主要新增內容歸納如下: 臨時協議確立廣泛域外適用之範圍,包含但不限於在歐盟內提供或部署人工智慧系統的企業[4]。但澄清該法案不適用於專門用於軍事或國防目的之系統。同樣,該協定規定不適用於研究和創新目的之人工智慧系統,也不適用於非專業原因之個人AI使用。 臨時協議針對通用AI(General purpose AI)[5]模型,訂定相關規定以確保價值鏈之透明度;針對可能造成系統性風險之強大模型,訂定風險管理與重要事件監管、執行模型評估與對抗性測試等相關義務。這些義務將由執委會與業界、科學社群、民間及其他利害關係人共同制定行為準則(Codes of practices)。 考量到人工智慧系統可用於不同目的之情況,臨時協議針對通用AI系統整合至高風險系統,並就基礎模型部分商定具體規則,其於投放市場之前須遵守特定之透明度義務,另強調對於情緒識別系統有義務在自然人接觸到使用這種系統時通知他們。 臨時協議針對違反禁止之AI應用,罰款金額自3,500萬歐元 或全球年營業額7%(以較高者為準)。針對違反其他義務罰款1,500萬歐元或全球年營業額3%,提供不正確資訊罰 款750萬歐元或全球年營業額1.5%。針對中小及新創企業違反人工智慧法之行政罰款將設定適當之上限。 參、評估分析 在人工智慧系統之快速發展衝擊各國社會、經濟、國力等關鍵因素,如何平衡技術創新帶來之便利及保護人類基本權利係各國立法重點。此次歐盟委員會、理事會和議會共同對其2021年4月提出之AIA法案進行審議並通過臨時協議,係歐洲各國對於現下人工智慧運作之監管進行全面的討論及認可結果,對其他國家未來立法及規範有一定之指引效果。 此次臨時協議主要針對人工智慧定義及適用範圍進行確定定義,確認人工智慧系統產業鏈之提供者及部署者有其相應之權利義務,間接擴大歐盟在人工智慧領域之管轄範圍,並對於人工智慧系統的定義縮小,確保傳統計算過程及單純軟體使用不會被無意中禁止。對於通用人工智慧基礎模型之部分僅初步達成應訂定相關監管,並對基礎模型之提供者應施加更重之執行義務。然由於涉及層面過廣,仍需業界、科學社群、民間及其他利害關係人討論準則之制定。 面對AI人工智慧之快速發展,各國在人工智慧之風險分級、資安監管、法律規範、資訊安全等議題持續被廣泛討論,財團法人資訊工業策進會科技法律研究所長期致力於促進國家科技法制環境,將持續觀測各國法令動態,提出我國人工智慧規範之訂定方向及建議。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Artificial Intelligence Act: deal on comprehensive rules for trustworthy AI,https://www.europarl.europa.eu/news/en/press-room/20231206IPR15699/artificial-intelligence-act-deal-on-comprehensive-rules-for-trustworthy-ai (last visited December 25, 2023). [2]European Commission, Commission welcomes political agreement on Artificial Intelligence Act,https://ec.europa.eu/commission/presscorner/detail/en/ip_23_6473 (last visited December 25, 2023). [3]Artificial intelligence act,P5-7,https://superintelligenz.eu/wp-content/uploads/2023/07/EPRS_BRI2021698792_EN.pdf(last visited December 25, 2023). [4]GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2 (last visited December 25, 2023). [5]General purpose AI-consisting of models that “are trained on broad data at scale, are designed for generality of output, and can be adapted to a wide range of distinctive tasks”, GIBSON DUNN, The EU Agrees on a Path Forward for the AI Act,https://www.gibsondunn.com/eu-agrees-on-a-path-forward-for-the-ai-act/#_ftn2(last visited December 25, 2023).