西班牙隱私保護專責機構對Google發動刑事制裁程序

  西班牙隱私保護專責機構「資料保護專員」(Data Protection Commissioner;一般多以其西班牙文縮寫AEPD簡稱之 ),針對Google街景服務(Street View)攝影過程中不當蒐集網路用戶資訊一事,於2010年10月18日對Google發動刑事制裁程序(criminal sanction procedure)。AEPD於其網站上發表聲明,其已經掌握Google涉及五項犯罪活動的證據,其中包括蒐集Wi-Fi用戶資訊並將相關資料傳送回美國等,AEPD已將相關證據資料提交馬德里法院。

 

  Google街景服務提供全球諸多地區的地理圖片,但此一服務也引發人們對於侵犯個人隱私之擔憂。儘管Google先前已多次針對街景攝影車攫取Wi-Fi用戶未經加密訊息之行為進行道歉,但仍有諸多國家對於Google是否違反內國隱私保護法規展開調查。

 

  此次AEPD採取法律行動前,事實上西班牙網路用戶權利協會已就相同問題Google提起訴訟,而西班牙法院亦於今年8月展開調查。AEPD對外表示,一旦法院認定Google犯罪情事屬實,各個犯罪行為將可處以6萬至60萬歐元之罰金。無獨有偶,加拿大政府亦於10月19日認定Google收集Wi-Fi用戶資料之舉動,屬於違法行為。

相關連結
※ 西班牙隱私保護專責機構對Google發動刑事制裁程序, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5318&no=55&tp=1 (最後瀏覽日:2026/02/14)
引註此篇文章
你可能還會想看
澳洲2020年5月全國數位經濟與科技會議會後聲明

  澳洲產業、科學、能源及資源部(Department of Industry, Science, Energy and Resources)於2020年5月15日舉行全國數位經濟與科技會議,並於會後發表「2020年5月全國數位經濟與科技會議會後聲明」。本次會議由澳洲產業科學能源及資源部部長擔任主席,邀集各州、領地地方政府的創新或科技部門首長,以視訊方式研商COVID-19疫情後如何整合澳洲企業的數位能量,並使澳洲在2030年成為全球數位經濟的領先者。   聲明中首先肯定澳洲數以萬計的企業在面對COVID-19疫情時所展現的危機應對能力與提出各式數位科技解決方案,用以支持員工、服務消費者、提出資源供應的替代方案、溝通利害關係人等,有效地提升了營運與財務上的效率。而政府則藉由提供各式財務、社會保險與稅務上的支援措施,並持續針對個別情況規劃最適的支援方案。   聲明指出根據研究,數位工具將能協助小型企業每週節省約10小時的工時,並提升約27%的營收;若乘上澳洲全國小型企業的總數,等於每週可省下約2200萬小時的工時,並可年增約3850億元的營收。企業在疫情期間所採取的數位科技解決方案是未來推動營運模式數位轉型的契機,因此在疫情後整合澳洲官方與民間的數位能量,將是疫情後經濟復甦與未來經濟成長的關鍵。   聲明指出與會聯邦及地方政府相關首長已達成共識,將組成「數位經濟與科技資深官員小組」(Digital Economy and Technology Senior Officials Group),專責整合聯邦政府與地方政府的數位政策。本小組將提出數位經濟政策與企業所需的支援措施,用以加速數位轉型與COVID-19疫情後的經濟復甦,包含完成人工智慧及自主系統能力地圖(Artificial Intelligence and Autonomous Systems Capability Map),來找出尚待強化的能力與可加強合作的契機。   此外本小組將合作推動數位與資通安全工作、關鍵技術法規鬆綁,以協助減少企業法遵障礙並支持數位經濟成長。COVID-19疫情下揭示澳洲推動數位轉型的重要性,期許本小組能有效整合數位能量並填補數位落差,未來將每年召開三次全國數位經濟與科技會議,追蹤澳洲數位經濟與科技生態系的推動情形,並聽取資深官員小組的定期工作報告。

基因改良作物命運大不同

  身為世上最大基因改良( GMO)棉花生產者的 中國大陸 ,已經批准將經過基因改良的混種棉花進行商業化,預料可以解決生活日用品上的短缺。相對於此, 歐盟 的農業部長們,卻對於是否批准編號1507的基因改良玉米,陷入一個進退維谷的困境。但是經過8年激烈的反對, 丹麥 卻允許基因改良玉米的進口。   而在 美國 有 85﹪的大豆,76﹪的棉花,45﹪的小麥是經過基因改良的。至於 澳洲 農業與資源經濟局則最近則對基因改良作物做出一份報告,認為各省禁止基因改良食品會減小經濟效益,使 澳洲 面對世界各地日益增多的基因改良作物發展,屈居弱勢。至終可能會在十年後造成1.5億到6億澳幣的損失。

OECD發布《支持綠色創業的政策:在丹麥建立綠色創業中心》報告

  經濟合作暨發展組織(Organisation for Economic Co-operation and Development, OECD)於2022年6月13日發布《支持綠色創業的政策:在丹麥建立綠色創業中心》(Policies to Support Green Entrepreneurship: Building a Hub for Green Entrepreneurship in Denmark)報告,以協助丹麥落實強化綠色創業生態系之倡議。   「綠色創業」一詞雖常見於學術文獻及政策文件,卻無明確統一之定義。本報告所採之定義為:「由新創公司發展及採用綠色產品、服務及製程。」所謂綠色,係指以「減少或防止任何形式的環境破壞、減少汙染物及廢棄物排放,或具有同等品質與效益但卻更節約資源」的方式為之。本報告評估丹麥的綠色創業狀況及政策建議,摘要如下: (一)丹麥綠色創業生態系現況 1.丹麥在綠色創業上是成熟的全球參與者,惟尚非全球樞紐。依2022年Startup Genome全球創新生態系報告,歐洲有12個潔淨技術(Cleantech)的新創生態系排名高於哥本哈根。 2.丹麥在環境技術領域之新創公司就業人口高於一般新創公司平均就業人口,但其規模擴大率則低於一般公司平均規模擴大率,顯示丹麥的綠色新創企業在擴大營運規模上遭遇困難。 3.相較於英國及瑞典等歐洲國家,丹麥的創投市場規模較小。融資管道的不足,可能成為影響丹麥綠色創業成長的原因之一。 (二)丹麥綠色創業政策藍圖 1.透過一系列融資工具提供綠色創業財務支持,如丹麥綠色投資基金(Danish Green Investment Fund)、丹麥成長基金(Danish Growth Fund)、丹麥創新基金(Innovation Fund Denmark)等。 2.國家級的丹麥能源創育聚落(Energy Cluster Denmark)與民間創新中心CLEAN共同橋接丹麥研發機構與企業進行合作。 3.更多且更廣泛之企業支援措施,如六個區域商業中心、Virksomhedsguiden入口網站、育成中心及加速器網路(如Beyond Beta)等。 (三)丹麥核心政策建議 1.發展整合公私部門之綠色創業策略,並追蹤綠色創業相關案例,作為未來制定政策之依據。 2.發展綠色創業的一站式平台,提升可供利用服務的能見度。此類服務可進一步引導綠色創業,包括明確區分開發新的或實施現有的綠色解決方案,以展現對綠色創業的支持。 3.加強對專業育成中心及加速器等既有政策的支援。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP