西班牙隱私保護專責機構「資料保護專員」(Data Protection Commissioner;一般多以其西班牙文縮寫AEPD簡稱之 ),針對Google街景服務(Street View)攝影過程中不當蒐集網路用戶資訊一事,於2010年10月18日對Google發動刑事制裁程序(criminal sanction procedure)。AEPD於其網站上發表聲明,其已經掌握Google涉及五項犯罪活動的證據,其中包括蒐集Wi-Fi用戶資訊並將相關資料傳送回美國等,AEPD已將相關證據資料提交馬德里法院。
Google街景服務提供全球諸多地區的地理圖片,但此一服務也引發人們對於侵犯個人隱私之擔憂。儘管Google先前已多次針對街景攝影車攫取Wi-Fi用戶未經加密訊息之行為進行道歉,但仍有諸多國家對於Google是否違反內國隱私保護法規展開調查。
此次AEPD採取法律行動前,事實上西班牙網路用戶權利協會已就相同問題Google提起訴訟,而西班牙法院亦於今年8月展開調查。AEPD對外表示,一旦法院認定Google犯罪情事屬實,各個犯罪行為將可處以6萬至60萬歐元之罰金。無獨有偶,加拿大政府亦於10月19日認定Google收集Wi-Fi用戶資料之舉動,屬於違法行為。
英國通訊管理局Ofcom在2008年12月公布寬頻速度業務法則(Broadband speeds code),用以確保消費者在寬頻速度的選購上可獲得更正確的資訊。這個業務法則係在要求ISP業者必須在銷售點提供明確的寬頻速度說明,於消費者購買時清楚解釋廣告上「保證頻寬」的意義;業者亦需解釋何種技術因素可能會降低速度(例如距離機房多遠影響速率傳輸、高峰流量時導致速率傳輸變慢等等),並提供客戶得以在家中改善情況的方案;若實際速度遠低於原來的說明或保證,則消費者得以選擇替代服務而無須負擔多餘的費用。雖然僅係自願性的業務法則,卻已經有超過全國95%的寬頻用戶所屬的ISP業者進行簽署。 此外,Ofcom同時公布寬頻服務消費者指南(Advice for consumers: Broadband speeds),協助消費者瞭解自己的寬頻服務權利,以及ISP是否遵行寬頻速度業務法則。 在2009年01月08日所公布的2008年英國寬頻速度報告(UK Broadband speeds 2008)指出消費者寬頻上網的平均速率為 3.6 Mbit/s(下行),低於業者在推銷廣告上的4.3Mbit/s。雖然3.6 Mbit/s就足以滿足大多數的網路應用,例如語音以及標準畫質的影音,但是有超過60%的英國消費者所購買的服務卻是「保證」8 M的頻寬;但有1/5 的用戶甚至實際得到的速率不到2 Mbit/s,是廣告上速率的45%。此外,研究顯示有9%的消費者不滿意寬頻服務,其中速度是最常被抱怨的項目;且因為距離的關係,城市居民的速率高於農村地區的15%。速率最高在倫敦,最低在英格蘭東北部、威爾斯以及蘇格蘭,使得農村用戶(14%)不滿意寬頻服務的比率高於城市用戶(8%)。 Ofcom在接下來的六個月內將持續監測這些已經簽署業務法則的ISP業者,以期督促業者能提供更符合消費者需求的服務,並預計納入2009年的政策規劃中。 (2008年英國寬頻速度報告為實地調查,於1500個家庭用戶安裝相關網路設備進行監測網路品質,透過調查期間為2008年10月23日至2008年11月22日止。)
Angie's List起訴Amazon Local侵害營業秘密消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。 該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。 Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。
歐盟執委會發布「民用、國防與航太產業之協同行動計畫」,強調前瞻技術的產業研發協作與成果運用歐盟執委會(European Commission)於2021年2月22日發布「民用、國防與航太產業之協同行動計畫」(Action Plan on Synergies between Civil, Defence And Space Industries),作為進一步加強歐盟前瞻科技與和相關基礎產業的行動方針。這也是歐盟首次以歐盟防禦基金(European Defence Fund)策畫補助民用、國防與航太產業領域中具有泛用性及破壞式潛力的前瞻科技(例如雲端、處理器、網路、量子和人工智慧等),以強化歐盟創新能力。 該行動計畫之目標為:(1)the synergies(協作):強化歐盟相關計畫與研究工具的互補性,使其得以涵蓋研究(research)、開發(development)和部署(deployment)三個區塊,並增加投資效益和成果有效性;(2)the spin-offs(衍生企業):本行動計畫鼓勵國防投資以促進國防研究衍生企業,使國防和太空的創新研究成果得以作為民用,持續發展相關技術;(3)the spin-ins(內部創新):前瞻領域的創新往往來自新創事業、中小企業和民間科研機構,因此本行動計畫促進歐洲各國國防合作計畫執行時運用民用產業創新研發成果,避免重複研究耗費資源。 為達到前述目標,該行動計畫臚列11個民用、國防與航太產業共同協作行動,並可綜整為四大方向:(1)創建框架以加強歐盟在相關計畫和研究工具間的協同作用和互惠(cross-fertilisation),例如在數位、雲端和處理器等產業領域建立共通框架;(2)關鍵技術(critical technologies)開發應確保系統一致,包含初步確認關鍵技術與未來相容性要求、進一步共同確認技術發展藍圖、最後確定旗艦計畫(flagship projects)間應減少依賴性並增加標準化和互操作性(interoperability),同時促進跨境與跨域合作;(3)建立創新孵化器(innovation incubator)網路支持新創事業、中小企業和科研機構(Research & Technology Organisation, RTO)的創新;(4)發展三大旗艦計畫,分別為無人機技術(drone technologies)、以航太為架構的安全連結技術(space-based secure connectivity)、以及太空交通管理技術(space traffic management),並藉由計畫發展相關產業使歐盟成為改變世界規則之領導者。 此外,該行動計畫雖然目前僅限於使用在歐盟級計畫和研究工具,但也可能積極影響並觸發歐盟各國仿效類似行動,進一步影響歐盟境外合作夥伴共同支持該行動。
美國國家標準與技術研究院公布人工智慧風險管理框架(AI RMF 1.0)美國國家標準與技術研究院(National Institute of Standards and Technology, NIST)於2023年1月26日公布「人工智慧風險管理框架1.0」(Artificial Intelligence Risk Management Framework, AI RMF 1.0),該自願性框架提供相關資源,以協助組織與個人管理人工智慧風險,並促進可信賴的人工智慧(Trustworthy AI)之設計、開發與使用。NIST曾於2021年7月29日提出「人工智慧風險管理框架」草案進行公眾徵詢,獲得業界之建議包含框架應有明確之衡量方法以及數值指標、人工智慧系統設計時應先思考整體系統之假設於真實世界中運作時,是否會產生公平性或誤差的問題等。本框架將隨著各界使用後的意見回饋持續更新,期待各產業發展出適合自己的使用方式。 本框架首先說明人工智慧技術的風險與其他科技的差異,定義人工智慧與可信賴的人工智慧,並指出設計該自願性框架的目的。再來,其分析人工智慧風險管理的困難,並用人工智慧的生命週期定義出風險管理相關人員(AI actors)。本框架提供七種評估人工智慧系統之信賴度的特徵,包含有效且可靠(valid and reliable):有客觀證據證明人工智慧系統的有效性與系統穩定度;安全性(safe):包含生命、健康、財產、環境安全,且應依照安全風險種類決定管理上的優先次序;資安與韌性(secure and resilient);可歸責與資訊透明度(accountable and transparent);可解釋性與可詮譯性(explainable and interpretable);隱私保護(privacy-enhanced);公平性—有害偏見管理(fair – with harmful bias managed)。 本框架亦提出人工智慧風險管理框架核心(AI RMF Core)概念,包含四項主要功能:治理、映射(mapping)、量測與管理。其中,治理功能為一切的基礎,負責孕育風險管理文化。各項功能皆有具體項目與子項目,並對應特定行動和結果產出。NIST同時公布「人工智慧風險管理框架教戰手冊」(AI RMF Playbook),提供實際做法之建議,並鼓勵業界分享其具體成果供他人參考。