摩托羅拉旗下子公司Motorola Mobility於10月6日向美國國際貿易委員會(ITC)提訴,指蘋果公司的iPhone, iPad, iTouch 以及一些 Mac電腦侵害其專利,同時Motorola Mobility也在伊利諾州北區和佛州南區的聯邦法院提出告訴。值得一提的是,在對法院提出的告訴中僅僅是 “指稱” 多種蘋果公司的產品如Apple iPhone 3G, Apple iPad等侵害其專利權,像這種沒有提出具體證據的告訴儼然已經成為風氣,似乎違反了最高法院於Bell Atlantic Corp. v. Twombly案中指出必須要提出明確的事證而非僅止於推論(speculation)的要求。
Motorola Mobility提出的3項告訴中共包含18項專利,乃是關於無線通訊技術,例如WCDMA (3G)、GPRS, 802.11、天線設計,以及關鍵的智慧手機技術,包括無線電子郵件、近距感測(proximity sensing)、軟體應用管理等。Motorola 智財部門的副總裁Kirk Dailey表示自蘋果進入通訊市場以來即開始與其長期磋商,但因為蘋果拒絕接受授權所以不得不提出告訴以阻止他們繼續侵權。近來手機市場上專利侵權互告頻繁,摩托羅拉的Android智慧手機日前也遭微軟控告侵權,HTC也與蘋果對簿公堂。Google、蘋果等手機市場的新秀顯然已對摩托羅拉、微軟等老前輩構成競爭壓力,形成手機大廠互相控告侵權的戲碼不斷上演。
2008年,連鎖咖啡店85度C告85.1度C商標侵權,台北地院以85.1度C影響了85度C的商譽和正常收益,判賠新台幣47萬元。-這是商標侵權爭訟常見「商標混淆」的具體場景,也是所謂的「正向混淆」(Direct Confusion)。試想,現在主客易位,85.1度C 是間小店,耕耘許久仍沒沒無聞;而85度C推出即一炮而紅、門庭若市。85度C是後來者,他是否可以商標混淆為由,主張85.1度C影響了其商譽和正常收益?這個「後商標比前商標強勢」的假設就涉及「反向混淆」(Reverse Confusion)。 所謂「商標的反向混淆誤認」,按經濟部智慧財產局〈行政法院105年度判字第465號判決研析〉,係指:「後商標因較諸前商標廣為消費者所知悉,消費者反而誤以為前商標係仿冒後商標,或誤認為前商標與後商標係來自同一來源,或誤認兩商標之使用人間存在關係企業、授權、加盟或其他類似關係。」 美國於1976年之Big O Tire Dealers, INC. v. Goodyear Tire & Rubber Co.案首度在侵害商標權訴訟承認有反向混淆之適用。然而,由於美國採「使用主義」(First to use),商標之認定係以使用的先後判斷之。而我國採註冊主義,商標先後以申請註冊的時間判斷之。我國最高行政法院105年度判字第465號判決則明確表示商標法明文規範商標註冊申請乃採先申請主義,排除反向混淆理論之適用。
「達文希密碼」的著作權爭議「聖血及聖杯」作者邁可貝奇及理查李伊於今年二月在英國高等法院對暢銷書「達文西密碼」出版商「藍燈書屋」(Random House)提出訴訟,主張「達」書作者丹布朗抄襲「聖」書中的若干想法(ideas)及主題(themes),包括其研究多年的「耶穌血脈理論」,因而侵害其著作權。 被告律師對於原告所提之控訴表示,「聖」書中的若干創意在本質上具備高度普遍化特質,無法成為著作權保護之客體。而原告律師亦強調,本案爭論重點並不在於「忽視他人創意成果」或是「獨佔想法或歷史事件」,主要是證明「達」書作者大量依賴「聖」書內容而完成「達」書。原告希望取得禁止令禁止「達」書使用「聖」書資料,此舉將迫使原訂今年5月中旬由湯姆漢克主演之原著電影延後上映。 著作權法之核心精神是保護「表達」,而非「想法」。對於同一題材之文學作品要區分何者屬表達,何者屬想法,並非易事。本案的出現僅是再次印證理論與實務之差距,而本案之後續發展亦值得繼續關注。
雲端運算所涉法律議題雲端運算(Cloud Computing),是一種基於網際網路的運算方式,用以共享軟硬體資源、依需求提供資訊給電腦和其他裝置。本質上其實就是分散式運算 Distributed Computing,其主要應用是讓不同的電腦同時協助你處理運算,故只要具備兩台以上電腦,讓他們之間互相溝通,協助您處理工作,就是基本的分散式運算。 雲端運算是繼1980年代大型電腦到用戶端-伺服器的大轉變之後的又一種巨變。使用者不再需要了解「雲端」中基礎設施的細節,不必具有相應的專業知識,也無需直接進行控制。雲端運算概念下描繪了一種基於網際網路而新增加的新興IT服務、使用和交付模式,藉由網際網路來提供各種不同的資源、服務功能而且經常是虛擬化的。 「雲端運算」供應模式以及實用定義如下: ‧ 軟體服務化 (SaaS):透過網際網路存取雲端的應用程式 (例如:Salesforce.com、趨勢科技 HouseCall)。 ‧ 平台服務化 (PaaS):將客戶開發的應用程式部署到雲端的服務 (例如:Google AppEngine 與 Microsoft Azure)。 ‧ 基礎架構服務化 (IaaS):有時亦稱「公用運算」(Utility Computing),意指處理器、儲存、網路以及其他資源的租用服務 (例如:Amazon 的 EC2、Rackspace 以及 GoGrid)。 雲端運算服務所涉及的法律議題相當廣泛,包含隱私權、個人資料保護、資料管轄權、契約責任、智慧財產權保護與營業秘密等。在隱私權問題方面,使用者的隱私或機密風險,乃至權利義務狀態會因為雲端供應商所提供之服務與隱私權政策(privacy policy)而有顯著不同,也可能因為資訊型態或雲端運送使用者類型不同而有差異。在雲端運算服務契約方面,發生資訊安全事件導致資料失竊或毀損時,供應商責任或注意義務如何於契約中合理分配風險,亦是契約方面重要議題。
低軌通訊衛星發展及應用之法制觀察低軌通訊衛星發展及應用之法制觀察 資訊工業策進會科技法律研究所 2022年04月25日 壹、事件摘要 隨著太空領域的技術突破,國際間主要國家已將焦點轉向太空場域,未來各類型太空商業活動及軍事性部署將大幅增加。低軌衛星(Low Earth Orbit Satellite)商業化發展趨勢最為明確[1],其所涉及的法制規範受到高度關注,對於國家如何承擔作為太空活動主體的國家責任,尤其是太空物體發射活動之風險控管、損害賠償責任問題,以及善盡減少太空碎片之國際義務等;此外,較為成熟的低軌衛星通訊服務,國際業者如SpaceX、OneWeb正積極於全球部署,則通訊傳播監管規範宜如何調適,亦為觀察重點。 本文以低軌通訊衛星發展及應用為核心,爬梳相關法制,面向涵蓋從火箭發射階段至衛星營運階段,說明其間涉及的活動規範之法制發展重點,以及供應鏈安全管理的議題,以供我國法規調適之參考。 貳、重點說明 一、發射階段 在衛星發射階段,主要涉及之國際太空法[2]為《登記公約》及《責任公約》,締約國必須遵守公約規定並善盡監管責任,是以美國、英國及日本對太空活動皆有嚴謹的許可審查制度[3]。一般而言,發射階段的審查通常分為「發射載具」及「太空載具」兩種,前者著重技術安全性的審查,避免發射過程中對他人造成損害,因此火箭發射業者必須盡可能採取相關安全措施,讓風險降至最低,而國家的角色則是評估該發射活動落於可接受的風險後,始可同意其施行。後者對於太空載具的審查,除了人造衛星本身的安全性之外,尚須說明該衛星之用途及設計,如是否會供軍事使用、若有核能之使用是否安全、是否符合國際無線電頻率秩序,以避免於外太空中造成危害或干涉到其他的人造衛星等。 除了太空五大公約之外,隨著太空活動的增加,尚有其他參考準則之提出,如2007年聯合國大會決議通過「太空碎片減緩指引」(Space Debris Mitigation Guidelines),該指引為自律性參考文件,並不具有國際法的法律拘束力,其建議在任務規劃、設計、製造發射火箭之飛行任務,應將太空碎片減緩措施納入考量[4]。美國聯邦通訊委員會(Federal Communications Commission, FCC)亦有提出其「太空碎片緩解政策與法令遵循指導」,以避免大量的低軌通訊衛星在結束任務後成為太空垃圾[5]。 我國已於2021年5月31日立法通過《太空發展法》,該法參照國際太空法規範,建立國家行政管理之法制基礎,特別是《登記公約》之太空載具登錄及許可規範;以及《責任公約》之太空事故損害賠償責任及保險制度等。至於太空活動之侵權案件,國際太空法係以國家為主體,無論是作為求償國或是被求償國,我國如何參與國際爭端解決,將有待實務觀察。 二、營運階段 (一)國際頻率協調 通訊衛星使用的無線電及微波的頻段較寬,為了避免訊號干擾,係由國際電信聯盟(International Telecommunication Union, ITU)依據無線電規則(Radio Regulation),協助無線電頻率分配及跨國頻率協調。 我國非ITU會員國,過往實務係以折衷方式參與國際頻率協調,如中華電信之中新一號及中新二號,採取與新加坡電信合作模式,爭取衛星通訊之營運機會;而科研用途之衛星可循專為科學研究及實驗之特殊保留頻段,可透過ITU下非官方機構組成的太空頻率協調小組(Space Frequency Coordination Group, SFCG)協調國際間科研使用頻段;或是透過國際業餘無線電聯盟(International Amateur Radio Union, IARU),取得頻率協調證明文件。 惟對於商用通訊衛星,因其需要供商業使用之專用頻譜,並且排除他人之干擾,仍必須透過ITU與他國進行頻率協調交涉並完成使用登記,始可提供衛星通訊服務。 (二)衛星通訊服務涉及之法規調適 通訊傳播服務屬於高度監管的行業,業者必須遵循電信管理法規之要求,始可於境內提供服務。我國已新增10.7-12.7GHz、13.75-14.5GHz、17.7-20.2GHz及27.5-30.0GHz等頻段供衛星通訊使用[6],惟申請人資格必須符合外資持股上限,即外國人直接持有股份總數不得超過49%,直接及間接持有股份總數不得超過60%[7]。法制政策上若欲放寬外資持股限制,則必須加以修法。另一途徑,國際衛星業者亦可透過具有衛星業務執照之國內業者代理申請,目前實務上中華電信已於2021年8月宣布與Starlink展開合作,可能協助代理Starlink的衛星通訊服務並在臺販售[8]。 之後衛星通訊服務的討論焦點可能會是「衛星間鏈路」(Inter Satellite Links, ISL)的應用,即允許資料在衛星之間傳輸及交換,無需再另外設置地面閘道站(gateway),而讓境內資料直接傳輸至外國。我國現行制度係外國業者在提交經營許可之申請時,自行承諾、遵守我國通訊監察之要求及義務。一旦衛星通訊服務盛行,是否會對國家主權之通傳監理產生挑戰,如通訊監察之資料調取協助義務、資料落地管理等,有待持續觀察[9]。 三、系統及零組件之資安管理 目前國際間僅有美國訂定衛星通訊之網路安全要求,惟其係針對軍事應用之衛星通訊,並非全面性之要求[10]。我國亦未對衛星的資通安全有相關的強制性規範,實務上衛星供應鏈業者主要是因應品牌商代工規格之要求,進行生產。是以,對於商用性低軌衛星通訊服務,現階段或許能參考5G行動通訊之共通適用原則,如供應鏈安全、資通安全維護計畫等。 參、事件評析 為了掌握太空產業商機,特別是現階段可預期的低軌通訊衛星的發展,我國相關的法制政策宜迎合產業需要,並促進各種太空活動的創新應用,以厚植人才與技術能量。 首先,在發射階段部分,我國《太空發展法》對於太空活動之監管與權利義務分配,已建立了法制基盤,本文認為後續細部的法制監管密度宜配合產業成熟程度加以定之。申言之,在初期發展過程,太空活動之監管似不宜課予過高的義務及責任,避免商業性太空活動之利害關係人望之卻步,建議以軟性方式,例如透過獎勵或輔導等途徑,促進業者符合太空碎片減量或其他環境保護之要求,待國內發射能量累積後,再採取拘束性規範並執行嚴格管理。 其次,在營運階段部分,國內產學界皆希望我國商業性太空活動能在國際間有所突破,惟受限於ITU國際頻率協調之困境,建議短期內宜推廣與外國合作的模式,政策上宜協助媒合國內設備元件業者與外國衛星所有者,以進入國際太空產業供應鏈。長期而言,商用衛星服務的經營仍需要透過ITU進行國際頻率協調,因此仍需動員外交力量,協助商用衛星拓展可行的頻率協調途徑。至於國際低軌衛星業者於我國落地提供服務部分,必須符合現行通傳法制規範,如取得公眾電信網路之使用核准、頻譜使用申請等,後續電信主管機關宜觀察ISL技術的使用情況、國際間對於衛星數據傳輸之要求,以及是否要求於境內設置閘道站等,以掌握對衛星網路之監管。 最後,在系統及零組件資安管理部分,由於國際間對於衛星網路技術標準仍在討論中,宜待國際間衛星資安標準形成,再據以制定相關規範。值得注意的是,衛星通訊網路為電信業之一環,屬於我國關鍵基礎設施領域並為《資通安全管理法》納管範圍,故其仍需遵守該法課予之高規格的安全標準,即衛星服務營運商應盡可能使用安全供應鏈及避免高風險設備,並從設計面納入資安考量。 [1] 低軌衛星係指佈署於低軌道之衛星,一般而言距離地球高度約160至2,000公里,相對於中軌道衛星、地球同步軌道衛星,低軌衛星離地球距離較近,因此傳輸延遲較短、功率耗損較少,進而可有效實現全球網路覆蓋。參考自楊可歆,〈低軌衛星於行動通訊業務之應用場景分析〉,MIC產業研究報告,2020/05/18, https://mic.iii.org.tw/aisp/Reports.aspx?id=CDOC20200507001 (最後瀏覽日:2022/03/31)。 [2] 目前國際太空法包括五大公約,分別為1967年《外太空條約》(Outer Space Treaty)、1967年《營救協定》(Rescue Agreement)、1971年《責任公約》(Liability Convention)、1974年《登記公約》(Registration Convention)及1979年《月球協定》(Moon Treaty)。 [3] 美國規範於《商業太空發射法》(Commercial Space Launch Act),可見於https://uscode.house.gov/view.xhtml?path=/prelim@title51/subtitle5/chapter509&edition=prelim (最後瀏覽日:2022/03/15);英國規範於《外太空法》(Outer Space Act),可見於https://www.legislation.gov.uk/ukpga/1986/38/contents (最後瀏覽日:2022/03/15);日本規範於《太空活動法》(宇宙活動法),可見於https://www8.cao.go.jp/space/english/activity/documents/space_activity_act.pdf (最後瀏覽日:2022/03/15)。 [4] UNOOSA, Space Debris Mitigation Guidelines of the Committee on the Peaceful Uses of Outer Space, 2010, https://www.unoosa.org/pdf/publications/st_space_49E.pdf (last visited Apr. 06, 2022). [5] FCC, Mitigation of Orbital Debris in the New Space Age, IB Docket No. 18-313, Apr. 02, 2020, https://docs.fcc.gov/public/attachments/DOC-363486A1.pdf (last visited Apr. 06, 2022). [6] 彭慧明,〈低軌衛星頻譜 6月開放申請〉,經濟日報,2022/03/24,https://udn.com/news/story/7240/6187130 (最後瀏覽日:2022/04/14)。 [7] 《電信管理法》第36條第4項及第5項 [8] 張瑞益,〈中華電、Starlink攜手合作 搶低軌道衛星商機〉,經濟日報,2021/08/30,https://udn.com/news/story/7240/5708752 (最後瀏覽日:2022/03/14)。 [9] Larry Press, Are Inter-Satellite Laser Links a Bug or a Feature of ISP Constellations?, CIRCLEID, Apr. 03, 2019, https://circleid.com/posts/20190403_inter_satellite_laser_links_bug_or_feature_of_isp_constellations/?fbclid=IwAR2iQEgPCm-ACC8kwvRaMDZPxCxLehHKvWvAn8tkr0njn8TubUTM_cLsIc4 (last visited Mar. 31, 2022). [10] 謝宜庭,〈美國白宮頒布有關於太空系統的網路安全原則《太空政策第5號指令》〉,資策會科技法律研究所,2021年4月,https://stli.iii.org.tw/article-detail.aspx?no=64&tp=1&d=8629 (最後瀏覽日:2022/03/14)。