美國聯邦貿易委員會推動「不留痕」機制,使消費者可選擇不在網路上留下個人資訊

  美國聯邦貿易委員會(Federal Trade Commission ,FTC)最近開始推動一套「不留痕」(do-not-track)機制,旨在防止網站蒐集未經使用者授權之個人資料。
FTC所出具的報告,旨在幫助政策制訂者和立法者形塑隱私規則,同時要求網站揭露更多其所蒐集之資料的相關事項,諸如蒐集的資料種類、如何使用該資料、以及保存期間。該報告並建議企業提供使用者更多拒絕被蒐集資料的退出選擇方案。

 

  FTC主席Jon Leibowitz在最近的記者會中指出,目前有許多尚未受到網路隱私規範之行銷方式,普遍受到廣告商、社群網站或是搜尋引擎運用。FTC當局的建議由五人所組成的委員會無異議通過,由於網路廣告商、媒體經營者以及零售商所建立的新的行銷模式均建基於個人資料的使用上,因此此建議亦同時考量到該等業者之利益平衡,至2011年1月31日前持續蒐集業者之意見。Leibowitz表示,FTC希望確保新興成長的資訊市場是建立在促進隱私、透明、商業革新和消費者選擇的框架上,而這也是多數美國民眾所希望的。」

 

  此一「不留痕」機制是參照FTC另外一套受歡迎的「勿來電」機制,也就是將電話號碼註冊在一特定的名單上,以防止電話推銷員來電,不過實際上的運作模式仍略有差異。相較於將姓名註冊在一份中央管控的名單,此一機制則是透過網頁瀏覽器的工具,傳送不願被追蹤或接受特定廣告的訊息,Google、Microsoft和 Mozilla都已測試過此套技術。

 

  在此一報告提出後不久,麻州參議員John F. Kerry表明他將會推動一部隱私權相關法律,使FTC有更多規則制訂權以實現其報告所提建議。因為作為相關主管機關,FTC制訂規則的權利其實很有限。

相關連結
※ 美國聯邦貿易委員會推動「不留痕」機制,使消費者可選擇不在網路上留下個人資訊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5340&no=57&tp=1 (最後瀏覽日:2024/11/22)
引註此篇文章
你可能還會想看
加拿大上訴法院判決”iPod tax”違法

加拿大上訴法院判決MP3播放器不在空白錄印媒體複製著作權物課稅的範疇,本案仍有上訴最高法院之可能。   根據本案審判法官Mr. Justice Marc Noel之見解,其認為雖然加拿大著作權法允許加拿大著作權委員會(Copyright Board of Canada)對空白可複製媒體(Blank Media)課稅,然法條中並未允許其可課徵MP3播放器製造商類似的費用。   Noel法官坦承其亦認知到,著作權委員會是本著希望補償著作權人因為點對點網路下載而致生損害的立場,惟重點在於「主管機關仍應依法行政。」就此而論,對 MP3播放器交易加以課稅仍非合法。   2003年12月加拿大開始針對可複製媒體課稅,而著作權委員會進而主張,MP3播放器製造業者每賣一部少於1GB容量的播放器應被課以2美元、1至10GB容量者課以15美元,以及超過10GB容量之播放器課以25美元,以補償著作權人因為點對點網路複製音樂所生的損失。   根據加拿大著作權法,著作權委員會可針對空白重製媒體進行課稅以補償著作權人因為個人目的重製(Private Copying)所生之損失,2000年開始針對可複製CD媒體課稅,包括空白影音帶。   播放器業者想當然並不接受這項義務的課予,因此起訴,而 本案判決的結果可預見將造成MP3播放器業者的降價行為。同時,一些將課稅所得分配與著作權人(包括演奏家或唱片公司)的機構,如加拿大個人重製組織(Canadian Private Copying Collective),已在評估是否將上訴至最高法院。不過至少,他們有可能將遊說加拿大政府以修正著作權法之方式,將MP3播放器的情形納入,以及若有可能,將未來類似性質之商品一併納入考量。

美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案

  無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。   無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。   美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。   截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。   人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。

醫療與健康資料創新應用法制研析

醫療與健康資料創新應用法制研析 資訊工業策進會科技法律研究所 2022年06月25日 壹、事件摘要   配合未來智慧醫療與精準健康之發展,民眾的健康、醫療資料將成為相關創新技術之基礎,且需整合許多異質資料庫(包括:生物資料、病歷、環境資料、基因資料等)作為相關研究與診斷基礎。然而,在創新實驗階段,個人資料保護向來是最核心之議題,如何在「創新技術」與「資料保護」間需取得衡平,於保護民眾個資權利的同時,又能滿足規範緩解或彈性化之明顯需求,便成為亟待解決的問題。   近年來,我國積極透過「法規沙盒」(Regulatory Sandbox)制度,來創造一個兼顧技術創新與有效監理的機制,例如《金融科技發展與創新實驗條例》與《無人載具科技創新實驗條例》皆是設立法規沙盒制度,在確保法律監管的前提下,依個案情形適度地鬆綁法規,為業者打造出恰當的實驗空間,以鼓勵創新發展。然而,我國於金融與交通領域訂立沙盒制度之時,關於個資法是否能被豁免,一度成為討論重點,最後二條例皆明文規定實驗進行以遵守個資法為原則,因此法規沙盒制度宜否用以緩解醫療與健康資料相關法律限制,仍堪研探;此外,醫療法規沙盒所涉及的醫療或健康資料主要落入敏感性資料之範疇,在個資法監管密度更高的情形下,更加限制了智慧醫療與精準健康產品或服務之發展,則如何突破此等醫療領域創新困境,即屬我國未來應密切關注之焦點。   職是之故,本文將研探國際上涉及醫療健康資料之機制,以作為我國法規沙盒等制度措施抑或設計其他方式運作之借鏡,讓創新者能獲有個資法等法規之規範彈性空間以進行創新活動。 貳、重點說明   以下對於英國、日本及新加坡等國制度,觀測分析其如何緩解資料法規而創造出彈性化空間,使創新者有機會藉此活用醫療健康資料,進行醫療領域之創新發展。 一、英國 (一)ICO法規沙盒   英國資訊專員辦公室(Information Commissioner's Office, ICO)於2019年推出法規沙盒計畫,希望可向利用個人資料開發具有明顯公共利益的創新產品和服務的組織,提供必要的試驗空間。在進入沙盒之前,ICO將會要求申請者簽署相關條款,並有專屬ICO沙盒成員與之聯繫,安排會議協助制訂沙盒計畫,同時也會要求申請者進行資料保護自我評估清單,以利沙盒計畫之制定[1]。   此沙盒的特色之一,在於不會完全排除資料保護規範之適用,而是著重於如何協助業者遵法,參與者能透過此計畫借助ICO在資料保護方面的專業知識和建議,從而在測試創新服務時減輕風險,並確保適當的個資保護措施臻於完備[2]。此外,參與者也將會收到一份暫緩執法聲明(statement of comfort from enforcement),亦即在參與沙盒期間,若產品或服務因疏忽而有違反資料保護相關法規之情形,只要違規行為未超出原先進入沙盒所預想的情況,便不會立即導致ICO的監管行動,暫緩程度則取決於創新團隊與ICO保持協作與對話之狀況[3]。   截至2021年2月,其尚有9個測試案例正在進行中,而與健康、醫療資料有關者為CDD服務有限公司(CDD Services)及諾華製藥的語音解決方案(Novartis Voice Enabled Solutions project)[4]。 (二)動態同意機制   「動態同意」(Dynamic Consent)是指一種基於網路與資通訊技術的即時同意程序,透過利用資通訊技術建立的動態同意網路平台,研究者得即時通知資料當事人其研究進度、研究目的變更等事項,資料當事人則得隨時修改同意範圍或撤銷同意[5]。   動態同意機制的優點,對研究者而言,在於節省許多徵詢同意所需之成本,也能清楚瞭解資料庫中的資料附加了哪種類型的同意或是資料當事人要求徵詢同意的密度[6],並且可以更加容易地整合其他多媒體技術(例如播放影片、照片與錄音)進行研究內容與風險之說明。而對於資料當事人而言,動態同意則可解決同意成本過高而不得不實施過於寬泛的概括同意之情形,從而更加保障資料主體之資料自主權[7]。   在英國,動態同意之原型係於2008年左右ENCoRe計畫提出;國際間較為有名的計畫皆實施於英國,例如曼徹斯特大學inBank團隊開發的蒐集與處理電子健康紀錄系統、牛津大學主導的參與式Rudy研究等[8]。 二、日本   日本於2018年實施「專案型沙盒」制度,建立特定不受現有法規限制之情境,使業者得於限定期間及場域內,以「新興技術」進行實證[9]。所謂「新興技術」,係指在創新事業活動中所使用具有顯著新穎性之技術或方法,且該技術或手法可創造出高附加價值者[10],而「具顯著新穎性」者,則指相較於該領域的常用技術和方法,更有新穎性且得以衍生實用化和事業化討論的技術與方法,例如AI、IoT、巨量資料、區塊鏈等[11]。   專案型沙盒中,有3件與醫療相關的案例,其中涉及個資法規範的是「以生物辨識技術了解本人意思(Digital Living Will)」一案。本案情境為考量到獨居老人數量增加,其因急救被送往醫療機關時,尚需時間確認其身分,甚至須向家屬說明治療方式且獲同意後,始得開始檢查和治療,而常有遲延急救時間之情事,故醫院及醫療業者共同申請一項專案型沙盒實證計畫,藉由「預立同意」之方式保存個人手術及檢查等意願,待患者發生急救情形時,將依指紋、手指靜脈、人臉等生物辨識技術準確且迅速地確認身分,向醫院提供患者的個人意願資料。本計畫採取的新技術,涉及日本個資法第18條、第19條及第23條規定,申請者表示將依法辦理之,例如告知參加者「獲取生物辨識資料之利用目的」、經參加者同意後始向第三方提供生物辨識資料等,並由厚生勞動省和個人情報保護委員會等主管機關進行監督[12]。 三、新加坡   新加坡於2012年10月通過《個人資料保護法》(Personal Data Protection Act 2012, PDPA)[13],同時依法設置個資保護委員會(Personal Data Protection Commission, PDPC)。該法旨在規範「非公務機關」之個人或組織對於個人資料的蒐集、利用及揭露(例如與第三方共享)等相關行為。該法第62條設計了豁免權(Exemption),個人或組織可於備妥申請文件後,向個資保護委員會預先申請尋求《個人資料保護法》任何條文之豁免;經審查批准後,個資保護委員會可以透過命令(order),在特定的規則或情況下,豁免任何個人或組織遵守本法的全部或部分規定[14]。   再者,新加坡提出「資料協作計畫」,以促進組織、政府、個人三方間資料無障礙流通,創造更多合作機會進行創新應用。該計畫可分作兩部分,首先建立「可信賴資料共享框架」(Trusted Data Sharing Framework),為企業對企業的資料交換方法步驟提供指南;其次提出「資料共享安排」(Data Sharing Arrangements)的資料法規沙盒計畫[15],排除企業以創新模式近用個人資料時發生的阻礙,「資料共享安排」係依據上述個人資料保護法第62條所賦予的豁免權,讓個人或組織可在個人資料保護委員會訂定的規則下,依照個案給予組織免除個資法部分規範(例如:不須取得當事人同意、免除跨境傳輸之限制)。故總體而言,「資料協作計畫」下的「可信賴資料共享框架」與「資料共享安排」,將由政府擔任監管角色,申請者只要符合指南建議方向,例如遵循法律、達到一定資料技術應用品質、實施資安與個資保護措施等,便可進行個人與商業資料之共享。   以「中風患者於資料共享安排(資料法規沙盒計畫)之運作」為例,醫院、志願福利組織(Voluntary Welfare Organization, VWO)[16]與行政機關之資料共享計畫,彼此之間分享病患個人資料,毋須再經患者之同意,由資料中介機構進行資料分析,以改善服務並確保有效媒合老年中風患者之援助。經分析後,志願福利組織可主動與醫院患者接觸以利其提供收入援助或社會支持,行政機關則可利用相關資訊改善政策[17]。 參、事件評析   隨著新興科技崛起,資料驅動之技術創新需求於近年大幅顯現,若個資法規範始終缺乏彈性,又無相關機制確保創新空間,我國社會經濟發展將嚴重受影響。對此,面對「創新技術」與「資料保護」間如何取得衡平的難題,各國政府透過不同規範及政策手段,給予個資法規範一定彈性,以促進國內創新與轉型的腳步,可見個資法既定規範並非絕對,重點仍在於如何做好個資保護評估及風險管控,使資料主體於創新實驗下仍可受到隱私保護。   綜觀上開國家的資料法規彈性化措施,主要以兩大方式進行,其一為「針對法規提出整體鬆綁或彈性化機制」(法規面),例如英國ICO法規沙盒、日本專案型沙盒、新加坡資料共享安排機制皆屬之,雖各國立法模式或依據有所不同,但主要仍是利用法規沙盒或性質相近之措施,於運作上賦予個資法規一定彈性。其二則為「利用技術解消資料利用障礙」(技術面),例如動態同意機制,透過科技來擴大個資法規的適法及遵法態樣。   據此,我國在研議「醫療領域宜否應用法規沙盒等制度,緩解個資法等相關法規現行規範」時,或可先肯認個資法確有(有條件地)豁免適用之餘地,且得以法規沙盒作為個資法限制之彈性機制。其次,在立法模式的選擇上,由於我國已著手立法《智慧醫療創新實驗條例》(草案)[18]或考量規劃泛用型法規沙盒,未來或可於「醫療法規沙盒」或「泛用型法規沙盒」立法過程中,研議是否豁免創新實驗有關個資法令之適用。再者,針對個資法豁免條件,有鑑於沙盒實驗期間不能忽視個人利益之隱私保障措施,故應有一套完善機制協助法規沙盒之監管,相關豁免事項及條件設計,也須考量創新、公共利益與資料當事人權利侵害之比例原則。最後,在實作方面,機關亦可協助與輔導業者引進動態同意等措施及其新技術,以利業者遵法。 [1] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [2] ICO selects first participants for data protection Sandbox, https://www.computerweekly.com/news/252467504/ICO-selects-first-innovation-Sandbox-participants (last visited Feb. 6, 2021) [3] ICO, What will happen if our application to the Sandbox is successful?, https://ico.org.uk/for-organisations/the-guide-to-the-sandbox/what-will-happen-if-our-application-to-the-sandbox-is-successful/ (last visited Feb. 6, 2021). [4] ICO, Current Projects, https://ico.org.uk/for-organisations/regulatory-sandbox/current-projects (last visited Feb. 6, 2021). [5] Jane Kaye, Edgar A Whitley, David Lund, Michael Morrison, Harriet Teare & Karen Melham, Dynamic consent: a patient interface for twenty-first century research networks, European Journal of Human Genetics, 23, 141–146 (2015) [6] 動態同意平台上的研究者介面,可能顯示資料當事人對於哪種類型的研究給予何種同意(例如對於心臟病研究給予概括同意;對於癌症研究給予特定同意),允許概括同意的時候也可以註記同意期限,或設定其他限制。 [7] Rasmus Bjerregaard Mikkelsen, Mickey Gjerris, Gunhild Waldemar & Peter Sandøe, Broad consent for biobanks is best - provided it is also deep, BMC Med Ethics, 20(1),71 (2019) [8] 義大利、美國、日本與澳洲等國目前皆有實施動態同意之機制,但都是以特定疾病或研究主題為主,尚未有全國通用的動態同意系統。義大利有名為「CHRIS」的慢性病研究動態同意平台;美國有非營利組織架設名為「PEER」的基因研究動態同意平台;日本有名為「Rudy Japan」的動態同意平台;澳洲有名為「CTRL」的動態同意平台。 [9] 生産性向上特別措置法第2條第2項。 [10] 同前註。 [11] 新技術等実証の総合的かつ効果的な推進を図るための基本的な方針,頁1(2018),https://www.kantei.go.jp/jp/singi/keizaisaisei/pdf/underlyinglaw/basicpolicy.pdf(最後瀏覽日:2021/2/10)。 [12] 〈生体認証を用いた本人意思に基づく救急医療の実証〉,首相官邸,https://www.kantei.go.jp/jp/singi/keizaisaisei/project/gaiyou7.pdf (最後瀏覽日:2021/2/19)。 [13] Personal Data Protection Act 2012, No. 26 of 2012. [14] Personal Data Protection Act 2012, Section 62. [15] Data Collaboratives Programme, https://www.imda.gov.sg/programme-listing/data-collaborative-programme (last revised Jun. 8, 2021) [16] 獨立於政府與市場運作之外的團體或組織。 [17] PDPC, Guide to Data Sharing (2018), https://www.pdpc.gov.sg/-/media/Files/PDPC/PDF-Files/Other-Guides/Guide-to-Data-Sharing-revised-26-Feb-2018.pdf (last revised Jun. 8, 2021). [18] 鄭鴻達,〈政院BTC閉幕 吳政忠:推智慧醫療沙盒、生醫條例修法〉,聯合新聞網,2021/09/01,https://udn.com/news/story/7238/5715580(最後瀏覽日:2022/06/13)。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP