美國國際貿易委員會(United States International Trade Commission)最新公布一份報告指出,中國大陸對於侵害智慧財產權(中國大陸稱知識產權)的立法與執法不力,在中國市場降低了美國企業的獲利能力,例如產品被非法與低成本的仿冒。
報告指出,中國大陸因為重大的結構性與體制性障礙,妨礙了對智慧財產權侵害的執法效果,包括地方政府對侵害企業的保護,各政府單位間缺乏協調,執法的資源與人員訓練不足,相關的民刑事法令也缺乏嚇阻效果。
由於中國大陸對智慧財產權侵害的執法不力,助長中國境內廣泛的侵害美國公司的商標、專利、營業秘密等權利,對於許多美國公司,特別是小公司而言,智慧財產權是重要資產,但缺乏在中國境內保護自己智慧財產權的資源。
報告還指出,在2009年所有美國海關扣押貨物的案件中,來自中國大陸佔79%,來自香港佔10%,整體金額達到2.047億美元。中國大陸有24萬家網咖,使用非法軟體。中國大陸的產品與商標仿冒問題仍十分常見,就算是支付權利金,與其他國家比較,中國大陸所支付的智慧財產權利金僅是一小部分。
歐盟在2013年12月3號正式通過「展望2020」(Horizon 2020)計劃,將在未來7年(2014-2020)之間,在10大領域投入770億歐元發展「尖端科學」(Excellent science)、「領導性工業」(Industrial leadership)與「社會挑戰」(Societal challenges)三大項目,以此承繼歐盟第七期科技研發計畫架構(7th research Framework Programme,FP7)所建立的基石。目前,歐盟在三大項目中,在今(2014)年發展項目分別是: 1.「尖端科學」:歐洲理事會將編列30億歐元,資助頂尖的科學家從事相關研究。此外,歐盟亦將透過獎學金的方式,鼓勵優秀的年輕研究者。 2. 「領導性工業」:透過18億的預算資助歐盟在產業領先的項目,包括是通訊技術、奈密、機器人等產業。 3.「社會挑戰」:歐盟將透過28億元解決2020年可能遇到的七個社會挑戰,例如是衛生、農業、海洋、生物科技、能源、交通、氣候行動、環境、與資源利用等領域。 在各大項目當中,因資通訊(ICT)產業占整體經濟4.8%外、且資通訊的研發設計(Research and Development) 又佔企業整體營收約25%。因此,促使歐盟在「展望2020」在ICT領域發展預算編列,高於歐盟FP746%,藉此加速資通訊技術、知識之革新與發展。至於,今(2014)年ICT在「領導性工業」發展項目中,將朝向以下6點發展: 1.下世代零組件與系統(A new generation of components and system)。 2.先進的計算(Advanced Computing)。 3.未來網際網路(Future Internet) 4.內容技術與資訊管理(Content technologies and information management)。 5.機器人(Robotics) 6.微型、奈米科技、與光電(Micro- and nano-electronic technologies, Photonics)。 綜觀上述六點,除了機器人、微型、奈米科技之新穎性,格外受人注目外,在「未來網際網路」與「內容技術與資訊管理」,亦須值得持續追蹤。在「未來的網際網路」發展上,歐盟將「智慧網路與新穎網路體系」(Smart Networks and novel Internet Architectures)、「先近雲端基礎建設與服務」(Advanced Cloud Infrastructures and Services )與「智慧光學與無線網路技術」(Smart optical and wireless network technologies)列為發展方向。 在「內容技術與資訊管理」上,巨量資料的研究(Big data-research)與創新與社群行銷的整合(Big data Innovation and take-up),則是歐盟未來1年發展項目之一。我國從2010年推動「數位匯流發展方案」(2010-2015年),其中如何促進新興媒體的發展與增加網路間競爭,一直為我國發展重點。因此,我國除了可透過歐盟所推動的「展望2020」為參考,從中思索是否具有政策盲點外,亦可成為2015年後科技政策進行先導計畫。
歐洲食品管理局發佈「基因改造動物所衍生的食品及飼料與基因改造動物的健康與福利之安全評估」指導文件雖然歐盟未曾批准基因改造動物所衍生的食品與飼料之市場應用。然生物科技發展迅速,許多歐盟境外的國家已發展許多關於基因改造動物科技之應用。是故,歐盟基於此類基因改造動物所衍生的食品與飼料可能對歐洲整體食品安全及環境帶來影響評估,而由歐盟執委會(European Commission, EC)要求歐洲食品管理局(European Food Safety Authority, EFSA)在歐盟第1829/2003 號規章(Regulation EC No 1829/2003)之架構下,發展關於「基因改造動物所衍生的食品及飼料與相關動物的健康與福利,以及對環境影響之安全評估」的綜合性的指導文件(Guidance),預計發布兩份指導性文件,第一份即為此份指導文件,其係針對「基因改造動物所衍生的食品及飼料」以及「基因改造動物的衛生與福利方面」兩方面的風險評估,在歷經2011所進行的公眾諮詢(Public Consultation)後,EFSA於2012年1月26日正式公布。該份指導文件內容並未包含「基因改造動物衍生之食品與飼料」對於環境所產生的影響之評估,EFSA另行制定第二份指導文件做為評估之依循,目前初稿已制定完成,並進行公眾諮詢,而可能於近期發佈。 因畜牧而豢養的動物之健康狀態,向來作為衡量此類農畜食品與飼料的安全之重要指標,本指導文件即以此指標作為整體基本假設。故該指導性文件之發展策略即以傳統飼養的動物健康狀態及其所衍生的食品與飼料作為安全衡量的基底標準(Baseline);並同時發展合適於「基改動物」與「衍生的食品與飼料」,各自的不同比較尺度的評估方法。其評估重點如下: 1.分子特性之評估,係提供針對動物插入一個穩定基因特徵(Trait)的結構描述之資訊之評估; 2.毒性物質之評估,針對基改動物以及衍生之食品與飼料所可能導致生物上改變之影響; 3.新蛋白質的誘發性過敏評估,係針對所有基改動物所衍生的食品所可能導致過敏之評估; 4.營養性評估,係針對所有的基改動物所衍生的食品與飼料對於人類或傳統飼養動的營養評估。 5.針對基改動物衍生的食品與飼料上市後的監測調查(Post-Market Monitoring, PPM),辨識此類基改食品與飼料在上市後可能的潛在之影響 此指導文件另一重點,即對於基因改造動物的健康與福利之評估,這項評估指標之重要性在於: 1.基於動物倫理,即對於動物本身之健康與福利之衡量; 2.動物本身的健康與福利之情形,亦被視為動物衍生產品之安全之重要指標。 綜上,此份指導文件建構出關於申請此類「基因改造動衍生食品與飼料」上市前的安全評估所必須提供的特定資料之內容架構,並結合即將發布的第二份關於環境影響評估的指導文件,做為上市前的綜合安全評估之依循。
由美國「二十一世紀通訊與視訊接取無障礙法」談無障礙通訊傳播環境之建立 德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現