本文為「經濟部產業技術司科技專案成果」
本文整理美國2025上半年營業秘密管理重要實務,以協助企業強化營業秘密保護。 一、實務常見的兩種不當使用營業秘密情境 由於數位化發展與遠距工作盛行,員工可以更容易地透過隨身碟、電子信箱等方式接觸並傳輸機密(數位文件)。 提醒公司應留意兩個實務常見的不當使用營業秘密的情境: 1. 員工離職後創業或跳槽至競爭公司。 2. 在公司因收購計畫進行盡職調查時,或公司與他方存有供應商、獨立承包商等合作關係期間,公司與他方共享機密資料,接收資訊方卻於協商破局/合作結束後持續留存並不當使用機密。 二、為防患未然,建議公司應「打造營業秘密保護文化」 「打造營業秘密保護文化」的7項重點如下: 1. 識別機密 公司應識別自身所擁有的營業秘密,區分營業秘密與一般資料。如果公司不清楚自己的營業秘密範圍,也會增加員工不知道需要謹慎處理哪些資料的風險。 2. 控管機密文件的重製、流通行為 監控機密文件的列印、下載等重製行為,禁止將公司機密資料傳輸至私人信箱或私人雲端帳戶。 3. 與員工簽訂保密契約,定期提醒保密義務,並客製化員工培訓課程 公司除與員工簽訂保密契約外,當員工開始新專案、轉調部門或升遷時,職務內容的變動,也會連帶影響公司需要向員工更新其對保密義務的理解。 公司應自員工入職起,進行定期的保密培訓與宣導,並針對特定職位客製化相關具體的保密情境,讓員工能夠確實了解公司的保密政策,知道自己應採取/不應採取某些行動,以及行動背後的原因。例如:工程師須了解技術文件的保護方式;銷售團隊需要與客戶資料、定價策略相關的保密培訓課程。 4. 離職人員管理 離職面談應明確提醒員工具持續性的保密義務,且留下相關紀錄,內容應包含對員工任職期間所接觸任何營業秘密的討論資訊,並讓員工簽署書面聲明,確認自己具有保密義務。 5. 網路控管 遠距登入公司系統須透過VPN。 6. 外部活動管理 公司應留意與外部單位(潛在合作夥伴、供應商或客戶)共用敏感資料時,契約須明確約定可共用的資料範圍、可共用資料的人員以及可共用資料的情境。契約應包含保密契約、標示機密資料、返還機密的流程以及定期稽核以確保遵守保密義務。 7. 稽核與改善 定期稽核與持續改善有助於強化營業秘密保護機制,例如:法務、資訊、研發及銷售等部門跨部門協力合作,並持續培訓以打造營業秘密保護文化。 三、面臨營業秘密訴訟,行動策略為關鍵 營業秘密案件通常需要立即採取行動,以防止造成無法彌補的損害。由於在訴訟階段,法院不會僅憑「懷疑」或「模糊描述」就核發禁制令。建議公司平時應落實以下管理措施,以便能夠在發現風險行為後2~3天內,迅速蒐集相應佐證: 1. 證據保全機制應包含:妥善保存電子郵件、系統存取紀錄、裝置使用紀錄等證據。 2. 區分營業秘密的範圍。 3. 持續執行公司所設定的控管措施,如:公司保密政策;保密契約、僱傭契約等契約的保密義務;員工培訓。 4. 留存能夠佐證營業秘密的經濟價值的相關資訊,如:研發投入成本、競爭優勢等。 綜上,公司如欲減少實務上營業秘密糾紛風險,應及早確認是否落實、需要精進公司的營業秘密管理機制,建議國內公司可參考資策會科法所創意智財中心於2023年發布之「營業秘密保護管理規範」,協助公司檢視並循序調整營業秘密管理作法。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
以自己姓氏Chanel作為髮廊名稱引發商標侵權訴訟如同一般事業經營者,位於印地安那州的一名女士Chanel Jones(以下簡稱Jones),以自己的姓氏Chanel作為自營髮廊的名稱”Chanel’s Salon”。然而這看似普遍平凡的舉動卻引來令Chanel Jones始料未及的訴訟爭議。 今年(2014)8月Chanel Inc.(以下簡稱Chanel公司)對Jones提起訴訟,主張Jones違反商標法及不公平競爭法,剽竊Chanel公司長期耕耘的品牌名氣、識別度及良好商譽,其行為可能造成消費者錯誤連結印象認為Chanel公司是Jones開設髮廊的經營者或贊助者,並請求法院判決禁制令禁止Jones使用其名Chanel作為髮廊名稱。 根據Chanel公司的起訴書,Jones兩年前開始使用Chanel’s Salon作為髮廊名稱,而2013年7月開始Chanel公司寄給Jones停止侵權通知書(cease-and-desist letter)要求他不得再將Chanel出現於其髮廊名稱中,隨後又再度寄了四封追蹤/跟催信(follow-up letter),但Jones始終未作任何回應,所以Chanel公司才於今年提起訴訟。 經歷了數月之後,於今年12月16日,Jones於此商標戰中屈服,當庭與Chanel公司達成和解,法官作出和解決定書(consent judgment),和解決定書中載明永久禁止Jones再使用其姓氏Chanel於髮廊名稱,並且於2015年2月15日前將所有提及Chanel的內容全部移除。雙方並且於簽定的和解判決書中認定使用Chanel名稱是侵犯Chanel公司商標權的行為。 值得一提的是,如同起訴狀內容,此和解決定書中亦特別謹慎正視Chanel是Jones姓氏的這個事實。內容提及並非Jones再也無法使用自己的姓名於任何個人且非商業性的場合或用來識別指稱自己,只要Jones使用其姓名的行為不會產生任何與Chanel公司密切關連或關係的隱含。 Chanel公司大動作維權行為並非首舉,事實上這個擁有105年歷史的精品時尚品牌不僅早於1924年開始就陸續申請註冊商標,一直以來也非常積極維護其品牌商標權,從一系列的維權舉動似乎也可看出百年品牌對於商標保護的重視,透過商標侵權的制止、商標權利的維護,堅定地捍衛其品牌於精品時尚業屹立不搖的地位。
美國衛生暨福利部於09年8月公布關於醫療資訊外洩通知義務之暫行最終規則於2000年基因圖譜解碼後,「基因歧視」議題成為各界關注焦點,而在電子通訊技術之配合下,更加速了包括基因資訊之個人醫療資訊的流通。在此時空背景下,如何能在善用相關技術所帶來的便捷同時,也對於相關資訊不甚外流時,得以有適切的因應措施以保障患者之隱私,成為了必須處理的問題。 美國國會甫於今年(2009年)2月所通過的「經濟與臨床健康資訊科技法」 (The Health Information Technology for Economic and Clinical Health Act, HITECH) 之相關修正中,強化了對醫療資訊之保護,其中要求美國衛生暨福利部(the Department of Health and Human Service, HHS ),針對受保護之醫療資訊未經授權而取得、侵入、使用或公開外洩之情形擬定「暫行最終規則」(interim final rule)進行管理,該項規則亦於今年(2009年)8月24日公布。值得注意的是,HITECH之規範主體(適用主體、商業夥伴)與保護客體(未依法定方式做成保護措施之健康資訊)皆沿用「1996醫療保險可攜性與責任法案」(the Health Insurance Portability and Accountability Act of 1996, HIPAA)之定義。然而,與HIPPA最大的不同在於, HIPAA中僅以私人契約之隱私權政策間接地管理醫療資料外洩事件,但於暫行最終規則中直接課以相關主體一項明確且積極的法定通知義務。HITECH之規範主體,基於其注意義務,應於得知或可得而知之日起算,60日內完成通知義務;視醫療資訊外洩之嚴重程度,其通知之對象亦有所不同,必要時應通知當地重要媒體向外發布訊息,HHS也將會以表單方式公布於其網站中。 整體而言,HITECH首次課以規範主體主動向可能受影響個人通知醫療資訊外洩事件之義務,此為HIPPA過去所未規範者;其次HITECH也突破HIPAA過往基於契約關係執行相關隱私權及安全規定之作法,於法規上直接對於洩露醫療資訊之相關主體課以刑責,強化了違反HIPAA隱私權與安全規定之法律效果。惟值得注意的是,受限於美國國會對HHS提出最終規則之期限要求,HHS現階段所提出的版本僅屬暫行規定,最終規定之最終確切內容仍有待確定,也值得我們持續觀察。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).