美國EPA以強制法制推動大型工業設施導入符合綠色環保、效率節能等新興技術措施

  為落實推動可謂污染源主要大宗之大型工業設施,積極改善並導入符合綠色環保、效率節能等新興技術或措施,美國環保署(Environmental Protection Agency,EPA)於2010年12月完成「溫室氣體排放量許可方案(Framework for Greenhouse Gas Permitting Programs)」以確保未來國內新設置大型工業設施,其溫室氣體排放量能取得認定,並符合聯邦「清潔空氣法案(Clean Air Act)」許可規範。環保署並將推動各項行動,協助州地方政府調整法令及措施,屆時符合聯邦法規相關要求標準。

  依據此方案,自2011年1月起美國境內大型工業設施若有興建或進行重大修改計畫,必須使用能源效率措施、符合效率成本科技來興建,確保能減少溫室氣體排放,並取得符合許可證明,以此模式控制達成美國溫室氣體減量目標。


  並且,環保署並同時公佈制訂「特定產業新污染源排放標準(New Source Performance Standards,NSPS)」,而特定產業將包括石化燃料發電廠與煉油廠,兩項目前可謂最大工業污染源;並且所管制的空氣污染源,擴及包括溫室氣體、毒性化學物質,以及六種於「清潔空氣法案(Clean Air Act)」明定指標污染物(Criteria Pollutant)的重大常見空氣污染物。這些NSPS將設立特定產業新工業設施污染物之排放標準限制,並規範控制既有工業設施之空氣污染。美國環保署表示,未來將定期更新這些標準限制,以因應相關科學技術革新。


  環保署官員認為,這些推動措施將引領美國企業永續升級,開發更多綠色能源技術,吸引更多投資,並增加整體產業競爭力。然而,環保署這些措施,卻引起美國石油協會(American Petroleum Institute)代表的反彈,並認為環保署這項強制措施是史無前例,亦不符合「清潔空氣法案(Clean Air Act)」立法意旨及規範用意。環保署近來積極推動「溫室氣體排放量許可方案」,以及制訂「特定產業新污染源排放標準」,未來成效如何,及是否得以落實實施,有待後續觀察。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國EPA以強制法制推動大型工業設施導入符合綠色環保、效率節能等新興技術措施, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5412&no=57&tp=1 (最後瀏覽日:2026/02/06)
引註此篇文章
你可能還會想看
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

澳洲發布《人工智慧臨床應用指引》提供臨床照護之人工智慧使用合規框架

澳洲醫療安全與品質委員會(Australian Commission on Safety and Quality in Health Care, ACSQHC)與衛生、身心障礙及高齡照護部(Department of Health, Disability and Ageing)聯合於2025年8月發布《人工智慧臨床應用指引》(AI Clinical Use Guide),旨在協助醫療人員於臨床情境中安全、負責任使用人工智慧(Artificial Intelligence, AI)。該文件回應近年生成式AI與機器學習快速導入醫療現場,卻伴隨證據不足、風險升高的治理挑戰,試圖在促進創新與確保病人安全之間建立清楚的合規框架。 該指引以臨床流程為核心,將AI使用區分為「使用前、使用中、使用後」三個階段,強調醫療人員須理解AI工具的預期用途、證據基礎與風險限制,並對所有AI產出負最終專業責任。文件特別指出,當AI工具用於診斷、治療、預測或臨床決策支持時,可能構成醫療器材,須符合澳洲醫療用品管理管理局(Therapeutic Goods Administration, TGA)的相關法規要求。 在風險治理方面,該指引明確區分規則式AI、機器學習與生成式AI,指出後兩者因輸出不確定性、資料偏誤與自動化偏誤風險較高,臨床人員不得過度依賴系統建議,仍須以專業判斷為核心。同時,文件要求醫療機構建立AI治理與監督機制,持續監測效能、偏誤與病安事件,並於必要時通報TGA或隱私主管機關。 在病人權益與隱私保護方面,指引強調知情同意與透明揭露,醫療人員須向病人說明AI使用目的、潛在風險及替代方案,並遵循《1998年隱私法》(Privacy Act 1988)對個人健康資料儲存與跨境處理的限制。澳洲此次發布之臨床AI指引,展現以臨床責任為核心、結合法規遵循與風險管理的治理取向,為各國醫療體系導入AI提供具體且可操作的合規參考。 表1 人工智慧臨床應用指引合規流程 使用前 使用中 使用後 1.界定用途與風險。 2.檢視證據與合規。 3.完備治理與告知。 1.AI輔助決策。 2.即時審查修正。 3.維持溝通透明。 1.持續監測效能。 2.標示可追溯性。 3.通報與再評估。 資料來源:AUSTRALIAN COMMISSION ON SAFETY AND QUALITY IN HEALTH CARE [ACSQHC], AI Clinical Use Guide (2025).

美國眾議院一致通過電子郵件保護法案

  美國眾議院於2016年4月27日一致同意通過支持電子郵件保護及雲端隱私法案(Email Privacy Act, EPA),本法案之後將會要求執法部門於搜查電子郵件或儲存於雲端設備的資料時,必須向法院取得搜查令,才能取得超過180天以上的資料。   本法案係針對1986年推出的《電子通信隱私法(Electronic Communication Privacy Act, ECPA》進行補強,因為目前科技的進步,早已遠超過ECPA是在網路興起前所得規制的範圍,在當初ECPA法案訂定之初,人民仍有定期刪除E-mail以保持硬碟空間的習慣,但相較於現在多數人都已使用雲端信箱的習慣下,如仍能讓警方等恣意調查任何人的信箱,往往可取得巨量的消息,因此本次的修正可預期將更能使相關規範符合時宜需求。   本次修正重點如下: 1.過往之ECPA規定要求聯邦機構在調查超過180天的電子郵件時只需要取得傳票即可,現在則是需要取得搜查令。 2.要求政府機構必須先取得法院的搜查令,才可以要求供應者揭露其保有之資訊。 3.要求執法部門應於取得資料的10天內向資料被揭露者提供相關證明,如涉及政府單位者則縮短至3天。   雖然EPA在眾議院內獲得美國兩黨的一致通過,但仍須經參議院下一波的投票表決,才能決定本案是否得順利通過。

基於專利動向分析之專利策略規劃

基於專利動向分析之專利策略規劃 科技法律研究所 法律研究員 徐維佑 2014年12月23日 壹、專利布局策略目的   無論在企業針對新產品開發、或學研機構研究新興技術時,對於研究方向的判斷,皆應善加利用其他競爭公司、學研機構專利動向最新資訊。以各國專利資料庫為基礎,蒐集其他公司、機構的研究領域,或者與研發成果相關的專利等資料而成的專利地圖(patent map),可構築更完整的智財戰略。   欲將研究成果商業化時,販售排他性產品對於競爭非常重要。因此阻止其他公司製造仿冒品、類似品,甚至競爭品,或者防禦其他公司之侵權告訴,皆必須盡早制定對策,亦即必須掌握該技術領域的智財資訊,才能讓研發活動順利推展。 貳、各國政府公開之專利動向分析 一、英國國家專利藍圖分析報告   英國政府於2014年中,依續公告8大重要技術之專利藍圖分析報告[1],認為專利資訊可提供創新活動高價值之分析觀點,因此該國智慧財產局資訊團隊,透過專利申請資訊分析出全球性專利藍圖,幫助其國內企業與民眾瞭解此8大重要技術專利資訊,並將分析結果納入資金挹注之考量基礎。   專利藍圖分析報告之資料,來源為2013年至2014年間全球專利資料庫中專利公開(Published)之資料,以及諮詢英國智財局各專業技術領域之專利審查員之結果。而專利藍圖分析報告之分析內容,包括專利涵蓋範圍、專利申請排名領先群、專利優先權期間、專利合作開發申請圖、專利技術分析等。 二、韓國R&D專利技術動向調查   韓國R&D專利技術動向調查制度自2005年開始,每年度由與研究發展相關的各部會針對其提出之研發工作,提供研發計畫執行階段中,所研發之技術是否已有先前技術,或是與研發技術類似之專利發展情況等資訊,即以該研發領域之技術不被其它國家競爭對手搶先獲得專利權的目標作為研究人員之研究方向。   而專利技術動向調查之研發課題則由韓國專利廳下韓國智慧財產策略院主管之「e專利國[2]」負責調查,提供專利分析結果的綜合報告,提供各部會與各領域別的專利動向、方向與及各種分析報告,內容包含有政府R&D專利技術動向調查報告、國家專利策略藍圖報告、以及專利分析與相關生產報告等。並根據以上報告提供技術領域別研發計畫方向、挑選出將來商業化運用價值較高之專利。 參、代結論   專利動向分析的資訊為一種判斷的依據,儘管由分析報告所顯示的技術範圍中,判斷要進行哪一種研究時,需要的是研究者的經驗與知識,但專利動向分析有助於篩選出可行的研究範圍,尤其在投入國家資源補助科研計畫時,資源更應有效應用於可行的技術領域,而非早已佈滿專利地雷處。   目前產業研發過程缺乏完善專利布局分析。實際生產產品之企業為避免侵權故意,常忽略申請前檢索工作;雖研究前或研究中調查之專利動向分析,並不能保證研究成果的可專利性,然而該工作對於國家、企業之研究發展實屬必要。透過如英國國家專利藍圖分析報告、韓國R&D專利技術動向調查,由國家公開技術領域共通性專利分析報告,對於企業後續進行技術專利布局,或者研究機構擬定研究發展方向,皆會有莫大的助益,並節省相當的時間與人力成本,值得我國參考。 [1] UK Intellectual Property Office, Eight great technologies: the patent landscapes (2014), https://www.gov.uk/government/publications/eight-great-technologies-the-patent-landscapes (last visited: 2014/10/01) [2] 韓國e專利國網頁, http://www.patentmap.or.kr/patentmap/front/common.do?method=main(最後瀏覽日:2014/10/01)。

TOP