「不被追蹤網路資訊保護法」(Do Not Track Me Online Act of 2011)的內容為法律規定企業必須提供選項給消費者選擇退出不被網路追蹤的機制,例如廣告商為了廣告的行銷,以網路技術追蹤消費者軌跡,廣告商必須提供消費者退出被追蹤的選項,給消費者作選擇,主要的目的在保護消費者資訊不被網路技術追蹤而洩漏隱私,若是此法案通過後,可以藉此保護消費者的網路隱私權。
在2010年12月由美國聯邦交易委員會(U.S Federal Trade Commission, FTC)的網路隱私報告中初步提出Do Not Track Me Online Act,美國國會議員在2011年提出此法案進行討論,若是通過後,將會有效限制線上廣告及社群媒體追蹤消費者使用網路的行為,並且防免其將個人資料分享予其他企業,及有效限制線上廣告及社群媒體追蹤消費者使用網路。對於行政機關來說,能夠藉此協助美國聯邦交易委員會建構整體的不被追蹤網路法案標準。若業者未遵守此法案提供退出機制,美國聯邦交易委員會將可能提起不公正及詐欺訴訟,而發動此一訴訟的人員為各州檢察總長。
為了保護隱私,不被追蹤網路資訊法案的提出十分需要,對於企業是否能追蹤消費者的網路活動,消費者因此擁有選擇權。在美國聯邦交易委員會去年12月初步提出此法案後,許多網路瀏覽器例如Mozilla及Explorer紛紛改進技術,以提早因應不被追蹤法案的實施,而廣大消費者團體的也紛紛支持此法案,認為可以因此保護消費者的網路隱私權。
美國聯邦第七巡迴上訴法院於2018年08月16日宣告,美國伊利諾伊州杜佩奇縣內珀維爾市(Naperville)所經營之「獨占性」公用售電業,以裝設智慧電表手段蒐集用電戶即時(Real Time)用電資料,並保存長達三年之行為,並無違反美國憲法第四條修正案以及伊利諾州憲法第一條第六項所宣示之不得以不合理手段對於民眾居住隱私資料進行搜索之限制。 美國聯邦第七巡迴上訴法院闡明,本案爭點有二:第一,內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料,並保存長達三年之行為,是否構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」?第二,如內珀維爾市(Naperville)所經營之獨占性公用售電業以裝設智慧電表手段蒐集用電戶即時用電資料係構成「對於民眾居住隱私資料之搜索」,則內珀維爾市(Naperville)所經營之獨占性公用售電業是否有更高之公益,可合理化此一對於「對於民眾居住隱私資料之搜索」之行為? 美國聯邦第七巡迴上訴法院認定內珀維爾市電業以智慧電表手段蒐集民眾用電資訊,確實是構成美國憲法第四條修正案以及伊利諾州憲法第一條第六項所謂之「對於民眾居住隱私資料之搜索」。但是由於珀維爾市電業蒐集這些用電資訊,是基於更高之公益目的,因此仍屬以合理手段對於民眾居住隱私資料進行搜索。因此判決本案珀維爾市電業勝訴。 於第一爭點,美國聯邦第七巡迴上訴法院認定智慧電表之紀錄內容包含「電器負載特徵(load signature)」以及「用電戶電力消耗慣性」,對比Kyllo v. United States, 533 U.S. 27, 31-32(2001)乙案下警方以熱感應器方式偵測住宅整體熱能有無之行為,更高度細緻化、具有侵入性,且智慧電表之設置,於現今尚非普及(not in general public use),因此構成對於民眾居住隱私資料之搜索。又內珀維爾市(Naperville)所經營之獨占性公用售電業雖辯稱用電戶於裝設智慧電表時,皆已經同意電業蒐集其個人用電資訊,然美國聯邦第七巡迴上訴法院認定,內珀維爾市(Naperville)所經營之公用售電業具有高度獨占性,故用電戶裝設智慧電表之同意難謂有效,且用電戶同意用電,不代表用電戶即同意分享其用電資訊。 惟於第二爭點,美國聯邦第七巡迴上訴法院認定,由於內珀維爾市(Naperville)所經營之獨占性公用售電業已經聲明不會將此類用電資訊分享予有關政府機關,且本案對於用電戶用電資訊之蒐集,其目的亦與刑事追訴無關,是以應以低密度審查標準看待本案即可,又本案內珀維爾市(Naperville)所經營之獨占性公用售電業裝設智慧電表之目的在於促使電網現代化,並且可使發電業供應更加穩定之電力,並且也可以透過時間電價(Time-Based Pricing)之方式促使用電戶節電,並且減少電網負載,同時也可以使發電業節省查表之人事成本,因此雖然內珀維爾市(Naperville)所經營之公用售電業透過裝設智慧電表之手段蒐集用電戶即時用電資訊係構成對於用電戶之民眾居住隱私資料之搜索,然由於其具有更高之公益性,因此仍可合理化此一對於「對於民眾居住隱私資料之搜索」之行為。 綜上,本案美國聯邦第七巡迴上訴法院判定內珀維爾市(Naperville)所經營之獨占性公用售電業勝訴。
歐盟公布人工智慧白皮書歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。 在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。 而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。
iTunes販售的音樂將移除數位權利管理措施大多數於iTunes(蘋果電腦販售數位音樂的商店)販售的數位音樂,將被移除音樂上的數位權利管理措施(DRM)。iPod的製造者在2009年1月6日發表聲明,將於iTunes販售多元化價格的音樂,價錢將介於美金$0.76和1.3元之間。著作保護軟體(copy-protection sofeware)同時也稱為DRM「數位權利管理措施」(digital right management),此項措施就像一個標籤記號,其設計是為了預防人們非法下載音樂,並且同時避免他們複製音樂於其他的電子裝置,而導致降低銷售量。 iTunes將移除八百萬首歌曲的數位權利管理措施。蘋果電腦的執行長Steve Jobs早在2007年2月公開呼籲知名唱片公司放棄數位權利管理措施,但唱片公司藉此希望iTutes改變以一首歌曲固定價格美金$0.99元的規定,用以多元化的價格販賣歌曲作為交換的條件。 另外,iTunes提供消費者一個簡單的方式,只要在每首音樂多付美金$0.3元,或者是多付每張專輯價錢30%的金額,即可將原先買到的音樂換為移除數位權利管理措施的音樂。Steve Jobs說到,我們十分興奮可以在iTune提供消費者沒有數位權利管理措施的音樂,使用iPhone 3G的消費者能夠在任何地區、任何時候以同樣的價錢去下載音樂。iPod Touch Wifi的使用者同樣也可以在App Store(蘋果電腦官方線上商店)去買到同樣無數位權利管理措施的歌曲 。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。