美國國會提出「不被追蹤網路資訊保護法案」

  「不被追蹤網路資訊保護法」(Do Not Track Me Online Act of 2011)的內容為法律規定企業必須提供選項給消費者選擇退出不被網路追蹤的機制,例如廣告商為了廣告的行銷,以網路技術追蹤消費者軌跡,廣告商必須提供消費者退出被追蹤的選項,給消費者作選擇,主要的目的在保護消費者資訊不被網路技術追蹤而洩漏隱私,若是此法案通過後,可以藉此保護消費者的網路隱私權。


  在2010年12月由美國聯邦交易委員會(U.S Federal Trade Commission, FTC)的網路隱私報告中初步提出Do Not Track Me Online Act,美國國會議員在2011年提出此法案進行討論,若是通過後,將會有效限制線上廣告及社群媒體追蹤消費者使用網路的行為,並且防免其將個人資料分享予其他企業,及有效限制線上廣告及社群媒體追蹤消費者使用網路。對於行政機關來說,能夠藉此協助美國聯邦交易委員會建構整體的不被追蹤網路法案標準。若業者未遵守此法案提供退出機制,美國聯邦交易委員會將可能提起不公正及詐欺訴訟,而發動此一訴訟的人員為各州檢察總長。


  為了保護隱私,不被追蹤網路資訊法案的提出十分需要,對於企業是否能追蹤消費者的網路活動,消費者因此擁有選擇權。在美國聯邦交易委員會去年12月初步提出此法案後,許多網路瀏覽器例如Mozilla及Explorer紛紛改進技術,以提早因應不被追蹤法案的實施,而廣大消費者團體的也紛紛支持此法案,認為可以因此保護消費者的網路隱私權。

相關連結
※ 美國國會提出「不被追蹤網路資訊保護法案」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=5414&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?

美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)

美國消費者金融保護局擬納管一般性數位支付應用程式

2023年11月7日美國消費者金融保護局(Consumer Financial Protection Bureau, CFPB)發布擬議規則制定通知(notice of proposed rulemaking),計劃將一般性數位支付應用程式提供者的「較大參與者」(larger participants)納入監管,基於非銀行支付市場對消費者的日常金融生活日益重要,考量相關消費者保護風險,而有必要將此類支付公司納入《消費者金融保護法》(Consumer Financial Protection Act, CFPA)的監管範圍。 根據擬議規則,「提供一般性數位支付應用程式」是指消費者藉由應用程式的資金轉帳功能和數位錢包功能,進行「一般性」數位支付交易的應用程式。申言之,該數位支付應用程式係用於一般性產品或服務的消費,而非特定供應商所提供,且僅限用於支付其所提供商品或服務之數位交易手段。 此外,「較大參與者」之定義為透過行動通訊或網路應用程式提供數位錢包或個人對個人(person-to-person, P2P)支付的非銀行機構,並每年完成超過500萬筆支付交易,且該機構不屬於《小型企業法》(Small Business Act, SBA)所定義的小型企業(small business),根據CFPB估計,擬議規則將擴大監管於現行17家非銀行支付機構,其全年交易金額將近130億美元。 有鑑於消費者資訊貨幣化(Monetization)之資料治理議題,及數位支付領域的大型科技公司因持續發展而產生市場壟斷疑慮,CFPB擬藉由此項擬議規則擴大監管措施,將美國大型數位支付科技公司納入監管,要求其遵守CFPA的規範,使數位支付領域的非銀行機構及存款機構同步受到監管,一方面維持數位支付市場之公平競爭環境,並同時確保消費者受到CFPA的保障,降低消費者在使用數位支付時的交易風險。 近年我國因疫情的零接觸政策及數位經濟時代來臨,數位支付應用因而蓬勃發展,我國於2023年11月21日三讀通過《金融消費者保護法》修正案,將電子支付業納入金融服務業,逐步加強金融消費者權益保護,我國應持續追蹤外國金融消費者保障動態,在金融消費者保障上持續前進。

中國大陸之國家互聯網信息辦公室發布《國家網絡安全事件報告管理辦法》

中國大陸之國家互聯網信息辦公室於2025年9月11日發布《國家網絡安全事件報告管理辦法(下稱網安事件管理辦法)》,並將於2025年11月1日施行。網安事件管理辦法規定中國大陸之境內建設、營運網路或透過網路提供服務的網路營運者,於發生網路安全事件時的報告程序。 網安事件管理辦法值得注意或供我國參考有二者:一、與委外廠商之契約以其協力報告義務:該辦法第5條要求網路營運者應當以契約等形式,要求網路安全、系統維運服務提供商(含個人)向網路營運者報告監測發現,並協助網路營運者依辦法報告網路安全事件。簡言之,其透過法律監管網路營運商與委外廠商之間的契約或類似契約,以及報告之協力義務。二、個人資料與網路安全的關聯性:網安事件管理辦法透過《網絡安全事件分級指南》將網路安全事件分為1.特別重大網路安全事件、2.重大網路安全事件、3.較大網路安全事件、4.一般網路安全事件,四種分級。除關鍵基礎設施的中斷運行以外,前三個事件分級將100萬人、1000萬人、1億人以上公民個人資料丢失或被竊取、篡改、假冒,認定為較大網路安全事件以上等級,使大型網路安全事件與個人資料進行連接。換言之,網路安全事件不再僅是資安面的影響,公民個人資料完整性等法律概念逐漸進入資安領域,法律專業的投入將可能是網路安全發展中需審酌的範疇。

韓國智慧財產局提出「營業秘密原本證明」可直接申請海牙認證,強化營業秘密跨境保護

2025年9月15日,韓國智慧財產局(Korean Intellectual Property Office,下稱KIPO)與韓國外交部轄下之海外僑胞廳 (Overseas Koreans Agency,下稱OKA)共同宣布:即日起,「營業秘密原本證明(Trade Secret Original Certificate)」無須經過公證人的公證程序,即可直接申請海牙認證(Apostille)。此項政策旨在簡化韓國企業在海外保護其營業秘密的程序,減輕企業的時間與金錢成本。 在KIPO與OKA尚未推出該新政策前,依據韓國《不正競爭防止法》第 9-2條第3款規定,推定註冊此營業秘密原本證明者在註冊的時點,已擁有該電子文件所記載的資訊。然而,海牙認證僅頒發給「官方文件」,非官方機構所核發的營業秘密原本證明在國際上不會被視為官方文件,即營業秘密原本證明僅在韓國國內生效。當韓國企業積極擴展海外市場或在海外面臨營業秘密侵權糾紛時,企業如欲將營業秘密原本證明申請海牙認證以作為跨國訴訟之證據,需經過以下3步驟: (1)將其含有營業秘密內容的電子文件,向KIPO指定的原本證明機構申請註冊「營業秘密原本證明」。 目前KIPO指定4家非官方\機構,如韓國智慧財產權保護院(한국지식재산보호원)、LG CNS、RedWitt、Onnuri 國際營業秘密保護中心。以韓國智慧財產權保護院之流程為例,該機構自電子文件生成獨一無二的數位指紋(Hash,或稱雜湊值),與時間戳技術結合,製作營業秘密原本證明,以確保在特定時間點,該文件確實存在,且之後未被變更。即使對文件的微小修改都會影響數位指紋,使營業秘密原本證明失效。 (2)將其營業秘密原本證明交由公證人公證。 (3)取得公證人公證後,方得依據《關於官方文件簽發海牙認證及領事認證規定》(總統令)(공문서에 대한 아포스티유 및 본부영사확인서 발급에 관한 규정」(대통령령))向主管機關(即OKA)申請海牙認證。 9月新政策將「營業秘密原本證明」納入「可直接申請海牙認證的文件範圍」,即企業在取得由 KIPO 指定機構所核發的原本證明後,不須經公證流程,可直接申請海牙認證。此舉簡化行政程序,且經海牙認證為韓國真實文件之營業秘密原本證明,在海外爭議中可作為官方文件,提升公信力。 綜上可得知,韓國營業秘密原本證明的服務僅留存電子文件的最終版本所生成之數位指紋,而非註冊當時的電子文件本身。因此,本文建議企業仍應先打好文件管理機制的地基,簡要說明如下: 1.第一步,選定有價值、有高度洩密風險或即將對外共享的數位資料(如研發紀錄、客戶名單、演算法等),明確該資料相關之權責人員與作業規範。 2.第二步,建立可行之重要數位資料的生命週期(自原始資料之生成、保護到維護,再延伸至存證資訊之取得、維護與驗證)流程化管理機制,確認具備與管理流程相應的資源(如人員面之保密契約、教育訓練以及環境面之系統備份等)。 3.第三步,檢視現行規範與實際執行之情況與分析落差原因。 4.第四步,因應管理機制落實之程度、內外部變動之需求,進而調整合適的管理作法。 前述建議之管理作法已為資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》所涵蓋,企業如欲強化數位資料管理機制,可以參考此規範。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

TOP