日本網路購物標價錯誤判決與臺、日實務差異之研究

刊登期別
2010年04月
 

※ 日本網路購物標價錯誤判決與臺、日實務差異之研究, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5427&no=57&tp=1 (最後瀏覽日:2025/11/25)
引註此篇文章
你可能還會想看
「巨量資料應用」

  當工業的製造生產過程經過一連串自動化、產量化以及全球化之變革歷程之後,智慧工廠的發展已經成為未來各國的重點目標。生產力4.0的設計中,巨量資料(Big Data)是重要的一環,以製造業為例,傳統上將製造生產取得的數據僅用於追蹤目的使用,鮮少做為改善整體操作流程的基礎,但在生產力4.0推進之後,則轉變為如何藉由巨量資料來提升生的效率、利用多元資源的集中化與分類處理,並經過分析取得改善行動方式,使生產最佳化,再結合訂單需求預期分析,依市場變化調整製造產量,達成本控制效果。   在我國104年9月公布之「2015行政院產力4.0科技發展方案」,亦提及智慧機械、智慧聯網、巨量資料、雲端運作等技術開發,使製造業、商業服務業、農業產品服務等,提升其附加價值。除此之外,經濟部積極規劃佈建巨量資料自主技術研發能力並且促成投資,落實應用產業智慧化與巨量資料產業化之目標。然而,巨量資料的應用因涉及大量的資料蒐集與利用,因此,未來應著重於如何將資料去辨識化,顧及隱私與個人資料之保護。目前,針對此部分,法務部將研擬個人資料保護法修正案,制訂巨量資料配套法規。

日本國土交通省公布最後一哩路自駕車系統指引

  為促進自駕車研發和推廣,日本國土交通省召集產官學研各界成立先進安全汽車(Advanced Safety Vehicle, ASV)推進檢討會,檢討設計自駕車時之注意事項,並於2020年7月17日公布「最後一哩路自駕車系統基本設計書」(ラストマイル自動運転車両システム基本設計書),希望能藉此達成確保地方交通運輸能量及加速自駕車落地之目標。   「最後一哩路自駕車系統基本設計書」將操作適用範圍(Operational Design Domain, ODD)定義為限定區域或駕駛環境條件,並提出所有自駕車應具備之共通ODD,包括(1)道路/地理條件︰目標道路、行駛道路;(2)環境條件︰時間、天氣;(3)行駛條件︰行駛速度;(4)行駛空間︰可支援自駕車行駛之基礎設施,以及可提醒用路人注意正在進行自駕車實驗之設施。此外,由於不同應用情境會影響ODD之設定,故本書以限定路線下往返之自駕車為代表,說明在個案中該如何進一步檢討ODD。以行駛速度為例,在共通ODD中,最後一哩路自駕車時速應為30公里,但在提供限定路線內往返之載客服務時,自駕車的時速應設定在12公里以下。最後,「最後一哩路自駕車系統基本設計書」內整理最後一哩路自駕車共通及特有之技術要件,以及設計時應留意和確認的問題。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

美國衛生暨福利部於09年8月公布關於醫療資訊外洩通知義務之暫行最終規則

  於2000年基因圖譜解碼後,「基因歧視」議題成為各界關注焦點,而在電子通訊技術之配合下,更加速了包括基因資訊之個人醫療資訊的流通。在此時空背景下,如何能在善用相關技術所帶來的便捷同時,也對於相關資訊不甚外流時,得以有適切的因應措施以保障患者之隱私,成為了必須處理的問題。   美國國會甫於今年(2009年)2月所通過的「經濟與臨床健康資訊科技法」 (The Health Information Technology for Economic and Clinical Health Act, HITECH) 之相關修正中,強化了對醫療資訊之保護,其中要求美國衛生暨福利部(the Department of Health and Human Service, HHS ),針對受保護之醫療資訊未經授權而取得、侵入、使用或公開外洩之情形擬定「暫行最終規則」(interim final rule)進行管理,該項規則亦於今年(2009年)8月24日公布。值得注意的是,HITECH之規範主體(適用主體、商業夥伴)與保護客體(未依法定方式做成保護措施之健康資訊)皆沿用「1996醫療保險可攜性與責任法案」(the Health Insurance Portability and Accountability Act of 1996, HIPAA)之定義。然而,與HIPPA最大的不同在於, HIPAA中僅以私人契約之隱私權政策間接地管理醫療資料外洩事件,但於暫行最終規則中直接課以相關主體一項明確且積極的法定通知義務。HITECH之規範主體,基於其注意義務,應於得知或可得而知之日起算,60日內完成通知義務;視醫療資訊外洩之嚴重程度,其通知之對象亦有所不同,必要時應通知當地重要媒體向外發布訊息,HHS也將會以表單方式公布於其網站中。   整體而言,HITECH首次課以規範主體主動向可能受影響個人通知醫療資訊外洩事件之義務,此為HIPPA過去所未規範者;其次HITECH也突破HIPAA過往基於契約關係執行相關隱私權及安全規定之作法,於法規上直接對於洩露醫療資訊之相關主體課以刑責,強化了違反HIPAA隱私權與安全規定之法律效果。惟值得注意的是,受限於美國國會對HHS提出最終規則之期限要求,HHS現階段所提出的版本僅屬暫行規定,最終規定之最終確切內容仍有待確定,也值得我們持續觀察。

TOP