今年三月底,Google與美國聯邦貿易委員會(Federal Trade Commission, FTC)就Buzz案達成和解。2010年時FTC控告Google Buzz未確實保護消費者的個人資料,侵犯了消費者的隱私權,違反「聯邦貿易委員會法」(FTC Act)以及美國與歐盟所訂定之「安全港架構協議」(U.S.-EU Safe Harbor Framework)。FTC表示,Google搭配在其Gmail中的網路社交服務Buzz,讓Gmail使用者誤以為其可以自主決定是否加入該社群,但事實上縱使Gmail使用者選擇不加入,也無法完全移除此項服務。甚者,選擇加入Buzz的消費者,亦無法找到明確的方式,控制其分享的個人資料。FTC控告Google未取得消費者的同意,將Gmail的資料(通訊錄名單)供社交網路使用,構成目的範圍外的使用。
依據Google與FTC和解內容,Google必須執行一套更為嚴謹的隱私權制度,不得再有誤導消費者其個人資料開放程度的行為,並且在爾後二十年都需接受獨立機構的隱私審查。初步和解內容開放30天(至2011年5月2日 )供社會大眾提供意見,之後FTC將提出最終和解內容。迄今為止,消費者團體提出的意見,包括要求FTC限制Google持有個人資料的時間,將隱私權保護制度適用到其所有的產品,對其儲存於雲端系統的個人資料進行加密動作,以及在進行個人資料蒐集前,應彈跳出視窗取得消費者同意等
值得注意的是,FTC在和解案中關於隱私權政策的客體所使用的語彙為「涵蓋資料」(covered information )而非「個人資料」(personal information),「涵蓋資料」所包含的範圍除了傳統的「個人資料」,尚包含IP位址、個人實體位址,以及通訊名單等等。
本案是FTC首度依職權要求業者採取更為嚴謹的隱私權保護制度以保障消費者權益,亦是FTC初次依「安全港架構協議」所採取的行動。本案對於線上服務的隱私權保護無疑是一大進展,但亦有論者擔心嚴苛的隱私權保護制度,反將造成小公司或新業者市場參進的障礙,愈發壯大Google的市場地位。
除此之外,Google的Buzz服務亦被消費者以集團訴訟提起告訴,最終和解金為850萬美元。
隨著Google成為搜尋引擎界的龍頭,其近年的一舉一動皆備受美國以及歐洲管理當局嚴密注意,今年二月份時,Google即時街景服務亦因不當蒐集個人資料而被法國裁罰14萬美元。
根據德國專利商標局(Deutsches Patent- und Markenamt)2017年度報告,德國該年境內發明專利申請量達67,707件,僅較2016年下降0.3%(2016年專利申請量達歷年新高),主要領域在交通;而新型專利和設計專利申請量卻持續下降。歷年申請量如下表: (件數) 2017 2016 2015 2014 2013 2012 2011 發明 專利 67,706 67,907 66,898 65,963 63,177 61,361 59,612 新型 專利 13,299 14,030 14,271 14,741 15,470 15,531 16,038 設計 專利 44,297 57,057 58,017 60,837 56,944 55,250 53,197 資料來源:德國專利商標局 其中,德國汽車公司投資在電動汽車、輔助系統和自動駕駛等領域數十億元的成果在發明專利中被充分反映出來。根據德國專利商標局2017年度報告,該年自動駕駛專利申請數量有2,633件,較2016年增加14%,是2013年的兩倍。 在德國4,810件自動駕駛專利中,德國汽車公司就擁有超過2,006件,占42%,日本為28%,美國為11%。僅2017一年,德國汽車公司就取得325件自動駕駛專利,較日本公司259件、美國公司112件和法國公司的41件還多。其中絕大多數被Audi、Toyota和Volkswagen所擁有。 此外,德國境內電動汽車專利申請也增加10%,總數達到3,410件,超過三分之一是用於蓄電池和燃料電池,德國汽車公司高居專利申請量榜首,其中以Bosch和Schaeffler為最。 事實上,除了在德國境內,全球自動駕駛專利幾乎一半亦為德國汽車公司所擁有,截止至2017年底,占了48.8%,其中Bosch排名第一,共擁有1,101件專利。前十名專利擁有者如下圖: 單位:件 資料來源:德國經濟研究所(Institut der deutschen Wirtschaft) 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
員工分紅市價八折課稅現行促進產業升級條例第19條之1規定,為鼓勵員工參與公司經營,並分享營運成果,公司員工以其紅利轉作服務產業增資,而取得新發行記名股票,採「面額」課徵所得稅。而依據所得基本稅額條例第12條第1項第5款規定,對於員工「可處分日次日時價」與股票面額之間的差額部分,另計入最低稅負制課稅。 台聯黨團認為現行促產條例第十九條之一關於員工分紅配股以面額課稅規定,使不少高科技產業上市櫃公司,利用促產條例優惠,壓低員工本薪,以分紅配股吸引人才,造成營業成本低列,將薪資費用轉嫁給股東,扭曲財報,使高獲利的高科技產業和薪資紅利豐厚的科技人租稅優惠多繳稅少,造成政府稅收短缺,因而提出修改案,改由「市價的八成」課徵所得稅。立法院 經濟能源委員會初審通過修正促進產業升級條例,將員工分紅配股由「面額」改依「市價八折」課稅,上市櫃公司市價以配股發放日前一個月均價為準,未上市櫃公司則以配股發放日淨值為準,此規定 引發高科技業者反彈,並向經濟部反映。 目前員工分紅改為市價的八成課稅雖通過委員會初審,但提交下次院會討論前,須經朝野協商。經濟部表示,此案初審後尚需經過立法院政黨協商,再交由院會決定。員工分紅配股課稅方式改變,應要有配套才合宜(例如一定之緩衝期間讓業者調整員工薪資結構),若在配套未完成前就做決定,是比較不好的決策。
Blackberry向法院起訴指控Snap專利侵權2018年4月3日,Blackberry Limited(下稱Blackberry)向美國加州地方法院起訴(18-cv-02693),指控Snap Inc.(下稱Snap)的應用程式Snapchat,侵犯其包括行動裝置地圖改善技術、廣告技術和行動裝置的使用者介面改善技術共6項專利權。Blackberry指出Snapchat的地圖功能侵犯其關於定義與其他活動中用戶相對位置的專利;廣告功能侵犯其推播資訊至行動裝置的專利;通知點(Notification Dot)的未讀訊息計數顯示,侵犯其關於預覽新事件的專利。 Blackberry在今年3月也曾對Facebook提起訴訟,指控其社交平台Whatsapp和Instagram侵犯了Blackberry的專利權。對Snap提出的侵權訴訟中涉及的兩件專利US 8,209,634(下稱'634專利)和US 8,301,713(下稱'713專利),也同樣出現在對Facebook提起的訴訟案件。'634專利是關於通知點(Notification Dot)計數顯示的專利,而'713專利則是關於在傳訊對話中顯示時間資料的專利。 Snapchat是Snap在2011年9月發表的即時通訊應用程式,比Blackberry的通訊應用程式BlackBerry Messenger(下稱BBM)發表時間晚了6年。Blackberry認為其通訊應用程式,至今已成功使得全球有數十億的消費者在行動裝置上使用即時通訊。Snap使用Blackberry的智慧財產權並與Blackberry在即時通訊領域中競爭,分散了BBM的使用者,轉而選擇使用Snapchat,使Snap獲得可觀的不法利益。Blackberry因此向法院主張Snap應彌補其侵權行為對Blackberry所造成的損失。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。