三菱電機子公司三菱電機informationsystems公司所研發的圖書館系統發生個資外洩事件

  三菱電機informationsystems公司所研發用於圖書館的系統封包MELIL/CS造成引進系統的圖書館發生個人資訊外洩與Web館藏檢索系統當機的系統障礙。從2010年7月到9月因系統障礙,總共有3間圖書館,共2971人的姓名、出生日期、住址、電話及圖書名稱等個人資料外洩。

 

  有關個人資料外洩的經過,是因為三菱電機informationsystems公司在研發MELIL/CS系統時,先在引進系統的圖書館進行系統測試,於測試之後再將系統程式帶回公司修改,此時就不知情的將存有個人資料的程式帶回公司,也把這些資料登錄到產品的原始碼上。因此將進行測試的2間圖書館使用人約210人的個人資料登錄於該產品的原始碼上。
但發生個資外洩的直接原因更在於負責三菱電機informationsystems公司產品運作、維修的銷售伙伴千代田興產公司,該公司所設置的伺服器完全沒有設定權限區分,甚至不需密碼就可以連接該公司伺服器存取資料。因此發生第三人進入該公司伺服器,下載3個引進該系統圖書館約3000人的個人資料。

 

  另外對於Web館藏檢索系統當機的發生,是因為圖書館使用人為了獲取圖書館新增加館藏圖書的資訊,以自動蒐集資訊程式直接存取館藏資料庫所發生。三菱電機informationsystems公司當初在設定網路連接圖書館系統,是以一次存取可以連接10分鐘的方式,所以只要以連接頻率高的機械性存取,只要超過資料庫的同時連接數的設定數值,就會發生存取障礙。

 

  對於三菱電機informationsystems公司系統設計失當及千代田興產公司未設定伺服器存取權限所造成個人資料外洩事件,因為這兩家公司都是屬於財團法人日本情報處理開發協會(JIPDEC)的取得隱私標章企業,所以由JIPDEC依據隱私標章營運要領中的「有關賦予隱私標章規約」第14條規定,各處以由2011年1月起3個月的隱私標章停權處分。

相關連結
※ 三菱電機子公司三菱電機informationsystems公司所研發的圖書館系統發生個資外洩事件, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5455&no=57&tp=1 (最後瀏覽日:2026/01/18)
引註此篇文章
你可能還會想看
日本推升農業資料契約指針成為補助計畫要點

  日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。   前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。

德國聯邦網路局發布電信網路安全要求要點

  德國聯邦網路局(BNetzA)於2019年3月7日公布電信網路營運安全發展需求目錄關鍵要點。該要點係德國聯邦網路局電信通訊法第109條第6項規定,與聯邦資訊安全局(BSI)和德國聯邦資料保護與資訊自由委員會(BfDI)達成協議後制定,並由德國聯邦網路局發布之。此尤其適用於在德國發展5G網路,因該技術係為未來核心關鍵基礎設施,為確保技術發展之安全性,電信網路公司必須滿足相關安全要求。鑑於5G對未來競爭力極具重要性,故用於構建5G之技術必須符合最高安全標準,且應盡可能排除安全問題,該標準同樣適用於所使用的硬體和軟體。附加的安全目錄要點基本內容如下: (1)系統僅允許從嚴格遵守國家安全法規及電信保密和隱私法規,且值得信賴之供應商處獲得。 (2)必須定期且持續監控網路流量異常情況,如有疑問,應採取適當的保護措施。 (3)僅可使用經聯邦資訊安全局對其IT安全性檢查核可且取得認證之安全相關的網路和系統組件(以下簡稱關鍵核心組件)。關鍵核心組件僅能從獲得信賴保證之供應商/製造商中取得。 (4)安全相關的關鍵核心組)應在交付期間進行適當之驗收測試後方能使用,且須定期和持續進行安全檢查。關鍵核心組件之定義將由德國聯邦網路局和聯邦資訊安全局共同協議訂定。 (5)在安全相關領域,只能聘用經過培訓之專業人員。 (6)電信網路營運商須證明所使用的產品中,實際使用經測試合格之安全相關組件硬體和供應鏈末端的原始碼。 (7)在規劃和建立網路時,應使用來自不同製造商的網路和系統組件,以避免類似「單一耕作」(Monokulturen),即避免技術生態圈無法均衡發展,以及易受市場波動影響之不良效應。 (8)外包與安全相關勞務時,僅可考慮有能力,可靠且值得信賴的承包商。 (9)對於關鍵且與安全相關的關鍵核心組件,必須提供足夠的冗餘(Redundanzen)。   鑑於德國於3月中旬已拍賣5G頻譜,聯邦政府將大力推廣附加要求,並讓相關企業可以清楚了解進一步計畫。為確保立法層面之具體要求,聯邦政府計畫將對電信法第109條作重大修訂。明確規定操作人員必須證明符合安全規範,並由法律規範相關認證義務。針對關鍵基礎設施中使用的關鍵核心組件應來自可信賴之供應商/製造商,應適用於整體供應鏈。此外,德國聯邦政府擬針對聯邦資訊安全局法進行修訂,包括關鍵基礎設施、其組件可信賴性之相關規範。依聯邦資訊安全局法第9條規定,將在認證框架內提供可信賴性證明。

法國國民議會通過反仇恨言論立法提案

  法國國民議會(National Assembly)於2019年7月9日通過反仇恨言論立法提案,希望效仿德國社群媒體管理法(NetzDG),課予網路平台業者積極管理平台上仇恨言論(hate speech online)之責任。該提案希望透過立法要求大型網路平台及搜尋引擎,如Facebook及YouTube等,必須設置用戶檢舉管道,並於24小時內刪除以種族、宗教、性別、性取向或身心障礙為由之煽動仇恨或歧視性侮辱言論,否則將面臨高達全球營業額4%之罰款。   在主管機關方面,規劃由法國廣電主管機關「最高視聽委員會」(High Audiovisual Council, CSA)進行監管,網路平台業者必須向其提交仇恨言論之處理報告與相關數據。同時,平台業者應加強與法國司法系統的合作,取消違法用戶的匿名權利並提供相關證據資料,以利司法追訴。   2019年3月15日紐西蘭清真寺槍擊案之網路直播事件,讓各國警惕勿讓網路平台成為傳遞仇恨言論的工具。發起立法的法國議員Laetitia Avia表示,對抗網絡仇恨言論是場艱巨且長期的戰鬥,希望透過立法讓各方負起應有的責任,讓仇恨言論無所遁形,但反對者認為平台業者為了避免裁罰的風險,可能會對內容進行過度審查,相關自動化過濾技術也可能對言論自由產生不利影響。本立法提案仍待法國參議院完成審議。

英國資訊委員辦公室提出人工智慧(AI)稽核框架

  人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。   AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。   「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。   ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。

TOP