三菱電機informationsystems公司所研發用於圖書館的系統封包MELIL/CS造成引進系統的圖書館發生個人資訊外洩與Web館藏檢索系統當機的系統障礙。從2010年7月到9月因系統障礙,總共有3間圖書館,共2971人的姓名、出生日期、住址、電話及圖書名稱等個人資料外洩。
有關個人資料外洩的經過,是因為三菱電機informationsystems公司在研發MELIL/CS系統時,先在引進系統的圖書館進行系統測試,於測試之後再將系統程式帶回公司修改,此時就不知情的將存有個人資料的程式帶回公司,也把這些資料登錄到產品的原始碼上。因此將進行測試的2間圖書館使用人約210人的個人資料登錄於該產品的原始碼上。
但發生個資外洩的直接原因更在於負責三菱電機informationsystems公司產品運作、維修的銷售伙伴千代田興產公司,該公司所設置的伺服器完全沒有設定權限區分,甚至不需密碼就可以連接該公司伺服器存取資料。因此發生第三人進入該公司伺服器,下載3個引進該系統圖書館約3000人的個人資料。
另外對於Web館藏檢索系統當機的發生,是因為圖書館使用人為了獲取圖書館新增加館藏圖書的資訊,以自動蒐集資訊程式直接存取館藏資料庫所發生。三菱電機informationsystems公司當初在設定網路連接圖書館系統,是以一次存取可以連接10分鐘的方式,所以只要以連接頻率高的機械性存取,只要超過資料庫的同時連接數的設定數值,就會發生存取障礙。
對於三菱電機informationsystems公司系統設計失當及千代田興產公司未設定伺服器存取權限所造成個人資料外洩事件,因為這兩家公司都是屬於財團法人日本情報處理開發協會(JIPDEC)的取得隱私標章企業,所以由JIPDEC依據隱私標章營運要領中的「有關賦予隱私標章規約」第14條規定,各處以由2011年1月起3個月的隱私標章停權處分。
國際能源總署(International Energy Agency, IEA)於2022年7月發布「CCUS法律與管制框架:IEA CCUS指引」(Legal and Regulatory Frameworks for CCUS: An IEA CCUS Handbook),協助各國建構碳捕捉、利用及封存(carbon capture, utilisation and storage, CCUS)相關法制。CCUS是有助於實現2050年全球淨零目標的重要除碳技術,可以捕捉空氣中或大型排放源裡的二氧化碳,將捕捉到的二氧化碳進行再利用,或將二氧化碳注入深層地質構造當中永久封存,藉此減緩全球氣候變遷。 建立健全的CCUS管制架構對於達成全球氣候目標至關重要,IEA於該報告中進一步探討25項法制優先議題,大致可依開發階段區分為資源評估(如二氧化碳及地下空隙空間所有權歸屬)、場址開發、施工、營運、開發、關閉與關閉後防止碳洩漏之法律問題。 由於CCUS在各國發展情況有所差異,IEA提出數種立法模式,例如(1)修改既有廢棄物法律規範以管理CCUS活動,但可能無法涵蓋地下權等其他議題;(2)修正部分既有廢棄物規範並結合環境法規既有之管理面向(如環評等)以形成管制框架;(3)在既有的礦產或石油開發規範建立相關二氧化碳注入與儲存等活動規範,將可包含地下權、開發許可程序、營運及關閉等完整生命週期之立法。(4)制定專法以涵蓋CCUS所有面向之活動。 在國際經驗中,立法者與管制機關於建構CCUS法律框架時,經常遭遇下列問題,包含:(1)CCUS在滿足國家能源需求方面的預期作用為何?(2)CCUS法規如何與現有規範進行調適?(3)是否已有可用的監管指導原則?(4)誰是主要的利害關係人?應如何與之進行溝通?(5)未來是否有審查或修正框架之相關程序?(6)監管機構是否有足夠資源監督CCUS活動?IEA建議釐清上述議題,逐步形塑CCUS管制架構。
歐盟更新資料法問答助釐清適用範圍,企業宜因應調整資料管理機制歐盟委員會(European Commission)於 2025年2月3日因應將於2025年9月12日施行的資料法(Data Act),就其常見問題說明進行補充與更新為1.2版(Frequently Asked Questions on the Data Act,下稱FAQs),以協助企業面對資料法施行後的挑戰。 於新版FAQs中就資料法進行補充說明,以助企業了解資料法之適用範圍,就資料法所稱之聯網裝置與服務,聯網裝置泛指可以連上網路的裝置,包含智慧型手機,並僅限於由使用者所擁有的聯網裝置,另就聯網服務則須具備雙向資料傳遞且須與聯網產品的操作功能有影響之服務。 就資料持有者有義務提供之資料適用範圍,僅限於聯網裝置與相關服務所產出的原始資料與預處理資料(原始但可用),資料持有者就原始資料或預處理資料進行加值所產生資料,如經分析所產生之衍生資料、經投入重大資源進行清理之資料等,則不在共享義務之範圍內,另就資料的內容有其他法律保護亦不在資料法的範疇中,如網路攝影機之照片/影片有受著作權法保護係屬於資料內容,網路攝影機之使用模式/電池狀態/照明強度等資料才是資料法所規範之資料,惟須留意若影像之內容非屬著作權保護之標的,如網路攝影機因具感測功能而自動就影像判斷是否異常現象或提供建議,此類影像因不具人類創意而不受著作權保護,仍屬資料法所涵蓋範圍。 於FAQs之解釋中,就資料法實際操作與預期有所差異,歐盟委員會後續亦會整合與數位資料相關之法規,如建立資料聯盟策略(Data Union Strategy),以助於企業促進數位資料的使用與共享。國內廠商若有提供歐盟客戶相關聯網設備與服務時,須留意內部資料管理制度能否滿足資料法要求,確保組織有因應相關法規議題的變化進行制度的變更,如何將外部議題與資料管理制度連結,可參資策會科法所創意智財中心就數位資料管理機制所公布之《重要數位資料治理暨管理制度規範(EDGS)》,將組織營運所在國別之法規範變動納入關注之外部議題,並設定對應之資料政策與目標,建立符合法令規範之資料管理制度,如是否得以識別為資料法所適用之資料等,以確保組織資料管理機制符合法令要求。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國聯邦航空總署准許美國有線電視新聞網在人群中使用小型無人機進行拍攝美國有線電視新聞網(Cable News Network, CNN)通過美國聯邦航空總署(Federal Aviation Administration, FAA)之審查,允許使用小型無人機(small Unmanned Aerial Vehicle, sUAS)直接穿越人群中(flying directly over a person or people)進行拍攝採訪,為美國目前第一件允許在商業目的中使用小型無人機自由穿梭人群之豁免核准案。 美國於2016年8月通過聯邦法規第107篇(14 CFR Part 107)又稱小型無人機規則(small UAS rule),規定關於小型無人機之操作規範。其中該規則列舉7種操作禁止事項,須事前經由美國聯邦航空總署豁免方得進行操作(又稱Part 107 Waiver),分別為:1.夜間飛行、2.直接穿越人群飛行、3.經由行進車輛或飛機進行飛行、4.一人操作多架無人機、5.視距外飛行、6.飛行超過400英呎、7.飛行區域近機場或禁航區附近。 CNN本次豁免項目即第107.39條的「直接穿越人群飛行」之規定,該規定除飛越對象為操作者本身,或僅飛越在建築物、車輛上並不受禁止規範外,只要無人機穿越人群皆須經美國聯邦航空總署審查同意方得操作,否則將面臨重罰。此一豁免通過後,改變以往記者與攝影師合作之拍攝手法,改由受訪者直接接受無人機採訪,除節省人力資源外也能突破地勢之空間限制,對於商業營運模式將有重大變革。 然而由於直接穿越人群飛行之風險性極高,因此在本次豁免條件中亦有嚴格限制,除只能使用申請時之特定無人機外,並應該嚴格遵守製造商之使用說明。另外,不得擅自改變無人機之設計或在未經允許下額外加裝配備。同時飛行高度亦不得高於海平面150英呎,並須定期檢測維修。最後每次操作皆須詳細記錄並保存,包含機械故障時須立即回報。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。