三菱電機informationsystems公司所研發用於圖書館的系統封包MELIL/CS造成引進系統的圖書館發生個人資訊外洩與Web館藏檢索系統當機的系統障礙。從2010年7月到9月因系統障礙,總共有3間圖書館,共2971人的姓名、出生日期、住址、電話及圖書名稱等個人資料外洩。
有關個人資料外洩的經過,是因為三菱電機informationsystems公司在研發MELIL/CS系統時,先在引進系統的圖書館進行系統測試,於測試之後再將系統程式帶回公司修改,此時就不知情的將存有個人資料的程式帶回公司,也把這些資料登錄到產品的原始碼上。因此將進行測試的2間圖書館使用人約210人的個人資料登錄於該產品的原始碼上。
但發生個資外洩的直接原因更在於負責三菱電機informationsystems公司產品運作、維修的銷售伙伴千代田興產公司,該公司所設置的伺服器完全沒有設定權限區分,甚至不需密碼就可以連接該公司伺服器存取資料。因此發生第三人進入該公司伺服器,下載3個引進該系統圖書館約3000人的個人資料。
另外對於Web館藏檢索系統當機的發生,是因為圖書館使用人為了獲取圖書館新增加館藏圖書的資訊,以自動蒐集資訊程式直接存取館藏資料庫所發生。三菱電機informationsystems公司當初在設定網路連接圖書館系統,是以一次存取可以連接10分鐘的方式,所以只要以連接頻率高的機械性存取,只要超過資料庫的同時連接數的設定數值,就會發生存取障礙。
對於三菱電機informationsystems公司系統設計失當及千代田興產公司未設定伺服器存取權限所造成個人資料外洩事件,因為這兩家公司都是屬於財團法人日本情報處理開發協會(JIPDEC)的取得隱私標章企業,所以由JIPDEC依據隱私標章營運要領中的「有關賦予隱私標章規約」第14條規定,各處以由2011年1月起3個月的隱私標章停權處分。
日本內閣府於2018年年初提出著作權法部分條文修正案,本次修正集中在合理使用之相關規定,並於5月17日經參議院審議通過。文部科學省在修正概要說明中,提及本次修法放寬合理使用範圍,包括下列幾種情事: 為促進大數據所提供之加值服務或技術創新開發等目的,且不致影響著作之市場價值(如圖書檢索加上部分書籍資訊、論文比對檢索顯示部分原始論文內容)。 老師以教學或提供學生預、複習為目的,利用他人著作所製作之教材,以網路傳輸之方式,上傳後供學生下載使用。 為提供視障者閱讀或因肢體殘障而無法翻閱書籍之人,而將書籍文字以錄音方式呈現。 將美術館或博物館之展出品,製作成可使用於平板電腦之數位檔案,並用於展館導覽上。 上述情形均無須得著作權人之同意。日本政府期待透過本次修法, 在教育推動、便利身障人士及美術館之數位典藏利用等相關數據資訊產業發展上,有效緩解可能產生侵害著作權之問題,故此次條文修正案及後續相關立法動態值得密切注意。
美國環保署擬針對兩項奈米材料納入顯著新種使用規則奈米材質之特性雖有助於開發新穎產品,但對於環境與人體健康是否會造成危害,迄今仍未有定見;為避免奈米科技毫無節制地發展,2008年9月以降,美國環保署(Environmental Protection Agency,EPA)以毒性物質管制法(Toxic Substances Control Act,TSCA)管理奈米材料,並在10月底考慮將奈米碳管納入前述法規中;11月初,更進一步依據毒性物質管制法5(a)(2)發布「顯著新種使用規則(Significant New Use Rule,SNUR)」,將以矽氧烷(siloxane)所改造之奈米矽微粒(silica nanoparticles)與奈米鋁微粒(alumina nanoparticles)列入管理範圍內。 一般而言,化學物質如未列於由EPA所公佈之「化學物質目錄」者,皆應向環保署提出製造前通知(Premanufacture Notice,PMN);而顯著新種使用規則以指定特殊新種化學物質的方式,配合適用製造前通知制度,要求業界針對製造、加工、銷售與使用等過程,提出具體因應措施。申言之,關於前述兩項奈米物質,一旦涉及有別於以往的重大創新製造活動,業者即應於正式進行製造前之90天先行通報環保署,再由其評估該業者是否符合相關條件要求,否則得予以禁止或限制之。 根據環保署既有之測試資料,可以確認奈米微粒得由呼吸與皮膚接觸等方式進入人體。以矽氧烷所改造之奈米矽及奈米鋁,泰半係作為添加劑之用;然而,觀察過往製造前通知所登載之內容,該兩項化學物質無論在呼吸或皮膚接觸所造成之暴露程度尚屬輕微;因此,針對該等奈米材料而向環保署所為之通報流程及審查作業,可能會對於業者後續之生產製造活動形成不確定的阻礙。 有鑒於奈米材料可能對人體健康產生未知風險,為保障奈米工作環境中人員的安全,顯著新種使用規則將於2009年1月起正式生效,作為管理特殊化學物質的監督方式。對於製造或使用奈米材料所可能引發之風險,美國環保署正著眼於環境、健康與安全議題,逐漸採取較為謹慎的政策設計方向,以維護大眾利益。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
日本文部科學省發布產學合作研究成果歸屬合約範本【櫻花工具包】日本文部科學省於2002年提出產學合作契約範本,實行以來發現內容缺乏彈性,對於共同提交專利申請的共有專利權人能否進行商業化等研發成果歸屬問題規範不清。為此,2017年3月日本文部科學省科學技術及學術政策局參考英國智財局發布的Lambert toolkit等文件,提出11項合約範本,稱為【櫻花工具包】。 該工具的主要目標是期望產學合作從在意權利共有轉為重視研發成果商業化,提出包括大學或企業單獨擁有研發成果、雙方共有研發成果等多類型的合作契約模式,並解析如何從數種模式中選擇最適合的合約範本,盡可能在產學合作契約簽訂前,事先考量研究成果的商業化策略,從而提高研發成果商業化的可能性。當中建議,在進行模型選擇時需考慮以下因素: 對研發成果的貢獻程度。 智財權歸屬於大學的處理方法。 是否有必要通過大學發布研究成果。 研究成果歸屬(大學擁有、企業擁有、雙方共有)。 雙方是否同意智財權共有。 此外,為了盡可能使研究成果的智財權更廣泛應用,在參考適用範本時,皆應考量研發成果商業化的靈活性,無論智財權歸屬於大學或企業方,都必須滿足以下的條件: 不限制大學後續研究的可能性。 所有的智財權都要適當的努力使其商業化。 研究成果需在約定的期間內進行學術發表。 日本此一工具包之內容對於產學合作研究之推展,提供了更細緻化的指引,或許可為我國推行相關政策之參考,值得持續關注其內涵與成效。