從美國「聯邦風險與授權管理計畫」看我國促進政府部門導入雲端運算之策略與機制 科技法律研究所 2013年07月03日 資訊科技的發展,從早期「超級電腦/大型電腦」、近期「個人電腦」,到即將邁入以超大規模數量電腦主機虛擬集結的「雲端運算」時代。雲端運算將電腦集中運用,未來電腦運算設施就像是水、電;資料儲存與應用就像是銀行,只要連上網路就可以使用,不必各自投資發展。因此,「雲端運算」未來將成為每個國家的重要基礎建設。 將雲端運算列為重要的產業發展重心,已是各國的趨勢,而運用雲端運算所帶來的效益,如節省經費、提升效率等,亦為普遍地承認,再加上公部門相較於民間,其擁有較多的經費及資源來進行雲端運算的導入,而藉由公部門導入雲端運算,可以帶動雲端運算產業的發展以及雲端運算應用的普及化。因此,各國均皆致力於促進公部門導入雲端運算。 然而,在雲端運算帶來龐大經濟效益的同時,伴隨而來的,是新的資訊管理議題,雲端安全防護聯盟(Cloud Security Alliance, CSA)提出了雲端運算可能遭遇的九大安全威脅 : 一、資料外洩(Data Breaches) 二、資料遺失(Data Loss) 三、帳號被駭(Account Hijacking) 四、不安全的APIs程式(Insecure APIs) 五、拒絕服務(Denial of Service) 六、惡意的內部人員(Malicious Insiders) 七、濫用雲端服務(Abuse of Cloud Services) 八、審慎評鑑不足(Insufficient Due Diligence) 九、共享環境議題(Shared Technology Issues) 面對前述的安全威脅,政府部門在考量導入雲端服務時,首先面對的就是要探討如何在導入雲端運算後仍能維持資訊安全的強度,以及政府部門要從何尋找符合其需求的業者。 壹、事件摘要 美國政府在2010年12月發表了25項聯邦IT轉型重點政策,其中一項核心的政策便是「雲優先政策」(cloud first policy)。根據「雲優先政策」,聯邦機構必須在三個月內找出三項轉移到雲端的政府服務,並且要在一年內導入其中一項。 然而,此種新型態的雲端運算服務為聯邦機構帶來資安管理的新挑戰,傳統由各機關分頭洽談所導入資訊系統與應用規格之方法,並實施個別的資訊安全需求與政策的作法,對服務商而言,其所提供的相同服務,在各機關導入時,卻必須將受各個機關的審查,造成各機關投入過多的資源在審查程序上,導致政府資源的浪費,不但耗費時間、審查重複,且無法達到建構妥善操作程序的效果。 2012年6月6日,聯邦政府總務管理局(General Service Administration, GSA)宣布「聯邦風險與授權管理計畫」(Federal Risk and Authorization Management Program,以下稱FedRAMP)開始正式運作,GSA並表示,「FedRAMP」的正式運作,將解決美國政府在雲端產品及服務需求上,因各自導入之標準不一致所導致的系統相容性問題、重複投資浪費,並可降低各政府機關自行進行風險評估及管理相關系統所耗費的人力、金錢成本。預估該計畫可為美國政府節省高達40%的預算及費用,預期效益相當可觀。 「FedRAMP」的目的是要為全國政府機關針對雲端產品與服務的風險評估、授權管理以及持續監控等標準作業規範,建立一套可遵循之依據。未來所有雲端產品的服務提供者,都必須遵守及達到該計畫的標準規範,才能為美國政府機關提供雲端產品及服務。 貳、重點說明 「聯邦風險與授權管理計畫」主要由預算與管理辦公室(Office of Management and Budget, OMB)負責組織預算與管理;聯邦資訊長(the Federal Chief Information Officer,CIO)負責跨部門的整合;國土安全部(Department of Homeland Security, DHS)負責網際網路的監控與分析;總務管理局(General Services Administration, GSA) 則建立FedRAMP之架構與程序,並成立計畫管理辦公室( Program Management Office, PMO)負責FedRAMP之操作與管理;以及國家科技研究所(National Institute of Science and Technology, NIST)負責提供技術分析與標準;最後由國防部(Department of Defense, DoD) 、國土安全部、總務管理局,組成共同授權委員會(Joint Authorization Board, JAB),負責對服務提供者的授權與定期檢視。 FedRAMP制度的精神在於「作一次並重複使用」(Do once ,Use Many Times),同一內容的雲端服務,透過FedRAMP,僅須經過一次的評估與授權,即得被多個機關所採用。早期各機關重複檢驗同一廠商的同一服務之安全性,造成資源浪費的問題,將可獲得解決。當其他機關欲採用雲端服務時,可透過FedRAMP,免去再一次的評估與驗證。 FedRAMP主要由第三方評估機構、對服務提供者的評估、以及持續監督與授權等三個部份所構成,簡單介紹如下: 一、第三方評估機構的認證 FedRAMP的特殊之處,在於雲端服務提供者應由通過FedRAMP認證的第三方評估機構(3PAO)來進行審查,而第三方評估機構欲通過認證,除了要符合FedRAMP的需求外,還必須具備雲端資訊系統的評估能力、備妥安全評估計畫、以及安全評估報告等,另外亦同時引進了ISO/IEC17020作為評估機構的資格。其認證程序如下: (一)申請檢視 機構首先必須符合ISO/IEC 17020 檢驗機構的品質與技術能力,並且自行檢視FedRAMP網站上的申請表,自行檢視是否合乎要求,然後決定是否提出申請。 (二)完成要求 機構須分別完成申請表所要求的系統安全計畫(system security plan, SSP)、系統評估計畫(system assessment plan, SAP)、安全評估報告(security assessment report, SAR)。於完成後向計畫管理辦公室提出申請。 (三)審查 在接受申請後,總務管理局會與ISO網路安全專家共同組成「專家審查委員會」(Expert Review Board , ERB),審查該申請。 (四)決議 審查完畢後,FedRAMP計畫管理辦公室(PMO)會檢視ERB的意見,決議是否通過該申請。 於通過申請後,該機構將會被列入FedRAMP官方網站(www.FedRAMP.gov)的第三方評估機構名單,目前為止,陸續已有十五個機構通過共同授權委員會的授權,日後得對雲端服務商進行評估。 二、對雲端服務提供者的評估 在「聯邦風險與授權管理計畫」的機制設計中,政府機關或雲端服務提供者任一方,皆可提出申請(Request)啟動雲端服務的安全性評估(Security Assessment)程序,此程序中共有四個主要階段: (一)提出申請 在申請人將所須文件初步填寫完畢之後,計畫管理辦公室(PMO)即會指派資訊系統安全官(Information Systems Security Officer, ISSO)進行指導,使之得進行安全控制、出具必要文件、並實施安全測試。之後,PMO會與雲端服務提供者簽署協議,並要求相關機關實施對雲端服務系統的安全性測試。 (二)檔案安全控管 雲端服務提供者必須作成系統安全計畫(System Security Plan, SSP),表明安全控制之實施方法,及其相關文件如IT系統永續計畫(IT Contingency Plan)、隱私衝擊調查(Privacy Impact Questionnaire),並送交ISSO進行審查,再由雲端服務提供者就對審查意見予以回覆之後,由ISSO將案件送至共同授權委員會(Joint Authorization Board, JAB)進行審查,以確認所提交的SSP安全措施符合雲端系統所需。 (三)進行安全測試 服務提供者與第三方評估機構(Third Party Assessment Organization, 3PAO)簽約,且由PMO約集雲端服務提供者與3PAO,確認雙方對於安全測試實施的期待與時程,再由3PAO獨立進行該雲端系統測試,並完成安全評估報告(Security Assessment Report, SAR),闡述評估結果並確認所暴露的風險。雲端服務提供者針對此評估結果,作成行動與查核點報告(Plan of Action & Milestones (POA&M)),以提出矯正弱點與殘餘風險(residual risks)的措施、資源與時程規劃。 雲端服務提供者再將前述SAR與POA&M提交予PMO,由JAB決定是否接受該弱點及其修正計畫,或者提出修正建議。倘若JAB可接受該弱點及其他因應措施,則由ISSO通知雲端服務提供者即將進入安全評估的最後階段。 (四)完成安全評估 雲端服務提供者將所有安全控制相關文件彙成單一的安全評估方案,並提出證明將確實執行其安全控制措施。由JAB檢視此方案,並作出最終決定是否授予「附條件之授權」(Provisional Authorization)。得到此授權的雲端服務提供者名單,將會被列在FedRAMP官方網站上。倘若雲端服務提供者未獲得此授權,PMO會指導如何進行重新申請。 三、持續的評估與授權 持續的評估與授權(ongoing Assessment and Authorization, A&A)通常也被稱為持續監控(Continuous Monitoring),在FedRAMP中第三個也是最後一個流程,透過持續的評估與授權機制,來確保雲端服務提供者持續的安全性授權。其中包含了三個主要層面: (一)操作的能見度 操作能見度的目標,是藉由自動化的方式來減少政府機構在監督作業上的行政耗費。亦即雲端服務提供者透過自動化的資料提供、定期提交具體控制的證據文件、以及年度自我認證報告等安全控制措施來說明操作的能見度,而不必政府機構另行要求。 (二)變更控制程序 雲端服務提供者更新她們的系統是常有的事,此處的變更控制程序並非針對例行性的維修或變更,而是要求若有發生影響臨時性授權或的顯著變更時,服務提供者必須提供此種具衝擊性變更的有效資訊,使FedRAMP得以評估此變更的影響與衝擊。 (三)事件回應 事件回應方面聚焦於新風險和漏洞的因應,服務提供者在發現影響授權的新風險或漏洞時,應向機構說明其針對保持系統安全的因應對策與作法。 參、事件評析 在各國紛紛投入雲端運算的推動熱潮中,我國也不能在此項產業推動中缺席。2010年4月,行政院科技顧問組(現已改組為行政院科技會報)責成經濟部,研擬「雲端運算產業發展方案」;2011年5月,行政院研究發展考核委員會亦公布了「第四階段電子化政府計畫」,在內部運作管理面向,將運用新興雲端運算技術推動以全國性的政府雲端應用服務,減少機關重複開發成本,並達成節能減碳效果。 雲端的安全問題,無論在私人企業或政府部門,均為選擇導入雲端服務的第一要務,「第四階段電子化政府計畫」中亦指出第四階段電子化政府將以雲端資安防護推動為重點,運用雲端運算技術,創新資安服務價值,確保政府資通安全防護。 然而,在服務提供者的安全性方面,我國並沒有像美國FedRAMP計畫般適度地提供服務提供者的安全性保證。對此,我國可借鏡各國的作法,適度的以透過公正第三方機構驗證,來消除雲端服務安全性的疑惑,並推動一個公開的平台,將通過驗證的廠商公布出來,提供公部門甚至私人企業作選擇,不僅可免去同一服務廠商不斷重複驗證的麻煩,亦可削減選擇上的難題,並藉此發展雲端資安技術與推動雲端產業,使我國的雲端環境能夠更臻成熟。
美國與歐盟宣布跨大西洋資料保護框架美國和歐盟執委會於2022年3月25日宣布將建立新的跨大西洋資料保護框架(Trans-Atlantic Data Privacy Framework),該框架將促進美國與歐洲之間的資料流通,並解決歐盟法院在2020年宣布隱私盾協議(EU-U.S. Privacy Shield framework)無效時所提出的疑慮與問題。 該框架是重新建立美國與歐盟兩地個人資料傳輸的一個重要法律機制。美國承諾將實施新措施,以確保訊號情報活動(signals intelligence activities)是在必要且合法的國家安全目標下進行,並且不得不成比例地影響對個人隱私和公民自由的保護。基此,美國承諾的新措施包含強化美國訊號情報活動的隱私及公民自由保障機制、建立獨立且具約束力的救濟措施,以及強化美國情報機構對現有訊號情報活動的程序且分層監督。對於歐盟公民而言,將有全新且高標準的規範來保護個人資料;而對於美歐間的民眾和企業而言,該框架將可促進資料持續流動,足以鞏固歐美兩地每年高達一兆美元的跨境貿易,並使各種規模的企業能夠在彼此的市場中競爭。 資料流通對於美歐雙方的經濟關係以及所有企業而言都至關重要。事實上,美國和歐洲之間的資料流通所創造的經濟價值高達7.1兆美元,高居世界首位。在此背景下,新的跨大西洋資料隱私框架將強化美國與歐盟雙方對隱私、資料保護、法治和整體國家安全的共同承諾,未來美國與歐盟雙方將依此框架持續推進雙方各自相關的法律規範。
德國總理梅克爾敦促歐盟立法允許「資訊追蹤(data tracking)」,以有效打擊恐怖主義2014年7月歐盟法院宣告2006年起施行的「資料保留指令」無效,該指令允許警察機關使用私人通聯記錄,但不允許揭示通訊內容。資料保留指令之所以被歐盟法院廢止,起因於不合乎比例原則及沒有充分的保護措施,該指令規定歐盟成員國必須強制規定電信公司必須保留客戶最近六個月到十二個月的通聯紀錄,不過在歐盟法院廢止指令之前,德國憲法法院在2010年時就已經以違反憲法為由停止執行指令。 惟在2015年1月,伊斯蘭激進主義份子的恐怖攻擊事件,共12人被射殺。因此德國總理梅克爾2015年1月在下議院針對該恐怖事件發表演說,雖因美國的史諾登事件,揭露美國政府大量監聽私人通訊和監視網路流量的行動,而引起了德國人對隱私權保護的關注,但梅克爾表示德國各層級的部會首長都同意有使用私人通聯記錄的需要、使嫌疑犯的通聯記錄能夠被警方用來偵查犯罪,但應該由法律規範資料保留的期間限制,她敦促各界向歐盟委員會施加壓力,重新訂定資料保留指令,使各歐盟成員國能修正國內法律。 歐盟委員會正在評估此法制議題,並考慮向歐盟議會、各成員國、民間團體、執法部門和個資保護組織間建立開放式對話,決定是否有需要訂定新指令;但德國司法部長並不贊成梅克爾擴大監督人民通訊的想法,認為這是過於倉促的行動,而且除了資訊記錄留存外,德國政府也儲存所有媒體資料並限制媒體自由,他認為這並不合適。 目前英國國內保守黨和自由黨現正為新修訂的通訊資料法,為人民隱私權的保護範圍爭論不休,而美國由於近年受到不少駭客攻擊,故美國總統歐巴馬採取與梅克爾相似的立場,希望能擴張執法機關的權力,公開提倡強化美國網路安全相關法規。
通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章通用人工智慧的透明揭露標準--歐盟通用人工智慧模型實踐準則「透明度 (Transparency)」章 資訊工業策進會科技法律研究所 2025年08月06日 歐盟人工智慧辦公室(The European AI Office,以下簡稱AIO) 於2025年7月10日提出《人工智慧法案》(AI Act, 以下簡稱AIA法案)關於通用型人工智慧實作的準則[1] (Code of Practice for General-Purpose AI Models,以下簡稱「GPAI實踐準則」),並於其中「透明度 (Transparency)」章節[2],針對歐盟AIA法案第53條第1項(a)、(b)款要求GPAI模型的提供者必須準備並提供給下游的系統整合者 (integrator) 或部署者 (deployer) 足夠的資訊的義務,提出模型文件(Model Documentation)標準與格式,協助GPAI模型提供者制定並更新。 壹、事件摘要 歐盟為確保GPAI模型提供者遵循其AI法案下的義務,並使AIO能夠評估選擇依賴本守則以展現其AI法案義務合規性的通用人工智慧模型提供者之合規情況,提出GPAI實踐準則。當GPAI模型提供者有意將其模型整合至其AI系統的提供者(以下稱「下游提供者」)及應向AIO提供相關資訊,其應依透明度章節要求措施(詳下述)提出符合內容、項目要求的模型文件,並予公開揭露且確保已記錄資訊的品質、安全性及完整性 (integrity)。 由於GPAI模型提供者在AI價值鏈 (AI value chain) 中具有特殊角色和責任,其所提供的模型可能構成一系列下游AI系統的基礎,這些系統通常由需要充分了解模型及其能力的下游提供者提供,以便將此類模型整合至其產品中並履行其AIA法案下的義務。而相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。 AIO指出完整填寫與定期更新模型文件,是履行AIA法案第53條義務的關鍵步驟。GPAI模型提供者應建立適當的內部程序,確保資訊的準確性、時效性及安全性。模型文件所含資訊的相關變更,包括同一模型的更新版本,同時保留模型文件的先前版本,期間至模型投放市場後10年結束。 貳、重點說明 一、制定並更新模型文件(措施1.1) 透明度 (Transparency)章節提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,協助GPAI模型提供者有系統性的整理並提供AIA法案所要求的各項資訊。表格設計考量了不同利害關係人的資訊需求,確保在保護商業機密的同時,滿足監管透明度的要求。 前揭記錄資訊依其應提供對象不同,各欄位已有標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者。適用於下游提供者的資訊,GPAI模型提供者應主動提供(公開揭露),其他則於被請求時始須提供(予AIO或NCAs)。 除基本的文件最後更新日期與版本資訊外,應提供的資訊分為八大項,內容應包括: (一)、一般資訊General information 1.模型提供者法律名稱(Legal name) 2.模型名稱(Model name):模型的唯一識別碼(例如 Llama 3.1-405B),包括模型集合的識別碼(如適用),以及模型文件涵蓋之相關模型公開版本的名稱清單。 3.模型真實性(Model authenticity):提供明確的資訊例如安全雜湊或URL端點,來幫助使用者確認這個模型的來源 (Provenance)、是否真實性未被更動 (Authenticity)。 4.首次發布日(Release date)與首次投放歐盟市場的日期(Union market release date)。 5.模型依賴(Model dependencies):若模型是對一個或多個先前投放市場的GPAI模型進行修改或微調的結果,須列出該等模型的名稱(及相關版本,如有多個版本投放市場)。 (二)、模型屬性(Model properties) 1.Model architecture 模型架構:模型架構的一般描述,例如轉換器架構 (transformer architecture)。 2.Design specifications of the model 模型設計規格:模型主要設計規格的一般描述,包括理由及所作假設。 3.輸出/入的模式與其最大值(maximum size):說明係文字、影像、音訊或視訊模式與其最大的輸出/入的大小。 4.模型總參數量(model size)與其範圍(Parameter range):提供模模型參數總數,記錄至少兩個有效數字,例如 7.3*10^10 參數,並勾選參數(大小)所在範圍的選項,例如:☐>1T。 (三)、發佈途徑與授權方式(Methods of distribution and licenses) 1.發佈途徑Distribution channels:列舉在歐盟市場上使用模型的採用法,包括API、軟體套裝或開源倉庫。 2.授權條款License:附上授權條款鏈結或在要求時提供副本;說明授權類型如: 開放授權、限制性授權、專有授權;列出尚有提供哪些相關資源(如訓練資料、程式碼)與其存取方式、使用授權。 (四)、模型的使用(Use) 1.可接受的使用政策Acceptable Use Policy:附上可接受使用政策連結或副本或註明無政策。 2.預期用途或限制用途Intended uses:例如生產力提升、翻譯、創意內容生成、資料分析、資料視覺化、程式設計協助、排程、客戶支援、各種自然語言任務等或限制及/或禁止的用途。 3.可整合AI系統之類型Type and nature of AI systems:例如可能包括自主系統、對話助理、決策支援系統、創意AI系統、預測系統、網路安全、監控或人機協作。 4.模型整合技術方式Technical means for integration:例如使用說明、基礎設施、工具)的一般描述。 5.所需軟硬體資源Required hardware與software:使用模型所需任何軟硬體(包括版本)的描述,若不適用則填入「NA」。 (五)、訓練過程(Training process) 1.訓練過程設計規格(Design specifications of the training process):訓練過程所涉主要步驟或階段的一般描述,包括訓練方法論及技術、主要設計選擇、所作假設及模型設計最佳化目標,以及不同參數的相關性(如適用)。例如:「模型在人類偏好資料集上進行10個輪次的後訓練,以使模型與人類價值觀一致,並使其在回應使用者提示時更有用」。 2.設計決策理由(Decision rationale):如何及為何在模型訓練中做出關鍵設計選擇的描述。 (六)、用於訓練、測試及驗證的資料資訊(Information on the data used for training, testing, and validation) 1.資料類型樣態Data type/modality:勾選樣態包括文字、影像、音訊、視訊或說明有其他模態。 2.資料來源Data provenance:勾選來源包括網路爬蟲、從第三方取得的私人非公開資料集、使用者資料、公開資料集、透過其他方式收集的資料、非公開合成(Synthetic )資料等。 3.資料取得與選取方式(How data was obtained):取得及選擇訓練、測試及驗證資料使用方法的描述,包括用於註釋資料的方法及資源,以及用於生成合成資料的模型及方法。從第三方取得的資料,如果權利取得方式未在訓練資料公開摘要中披露,應描述該方式。 4.資料點數量Number of data points:說明訓練、測試及驗證資料的大小(資料點數量),連同資料點單位的定義(例如代幣或文件、影像、視訊小時或幀)。 5.資料範疇與特性(Scope and characteristics):指訓練、測試及驗證資料範圍及主要特徵的一般描述,如領域(例如醫療保健、科學、法律等)、地理(例如全球、限於特定區域等)、語言、模式涵蓋範圍。 6.資料清理處理方法(Data curation methodologies):指將獲取的資料轉換為模型訓練、測試及驗證資料所涉及的資料處理一般描述,如清理(例如過濾不相關內容如廣告)、資料擴增。 7.不當資料檢測措施(Measures for unsuitability):在資料獲取或處理中實施的任何方法描述(如有),以偵測考慮模型預期用途的不適當資料源,包括但不限於非法內容、兒童性虐待材料 (CSAM)、非同意親密影像 (NCII),以及導致非法處理的個人資料。 8.可識別偏誤檢測措施(Measures to detect identifiable biases):描述所採取的偵測與矯正訓練資料存在偏誤的方法。 (七)、訓練期間的計算資源(Computational resources (during training)) 1.訓練時間(Training time):所測量期間及其時間的描述。 2.訓練使用的計算量(Amount of computation used for training):說明訓練使用的測量或估計計算量,以運算表示並記錄至其數量級(例如 10^24 浮點運算)。 3.測量方法論(Measurement methodology):描述用於測量或估計訓練使用計算量的方法。 (八)、訓練及推論的能源消耗(Energy consumption (during training and inference)) 1.訓練耗能(Amount of energy used for training)及其計量方法:說明訓練使用的測量或估計能源量,以百萬瓦時表示(例如 1.0x10^2 百萬瓦時)。若模型能源消耗未知,可基於所使用計算資源的資訊估計能源消耗。若因缺乏計算或硬體提供者的關鍵資訊而無法估計訓練使用能源量,提供者應披露所缺乏的資訊類型。 2.推論運算耗能的計算基準 (Benchmarked amount of computation used for inference1)及其方法:以浮點運算表示方式(例如 5.1x10^17 浮點運算)說明推論運算的基準計算量,並提供計算任務描述(例如生成100000個代幣Token)及用於測量或估計的硬體(例如 64個Nvidia A100)。 二、提供GPAI模型相關資訊(措施1.2) 通用人工智慧模型投放市場時,應透過其網站或若無網站則透過其他適當方式,公開揭露聯絡資訊,供AIO及下游提供者請求取得模型文件中所含的相關資訊或其他必要資訊,以其最新形式提供所請求的資訊。 於下游提供者請求時,GPAI模型提供者應向下游提供者提供最新模型文件中適用於下游提供者的資訊,在不影響智慧財產權及機密商業的前提下,對使其充分了解GPAI模型的能力及限制,並使該等下游提供者能夠遵循其AIA法案義務。資訊應在合理時間內提供,除特殊情況外不得超過收到請求後14日。且該資訊的部分內容可能也需要以摘要形式,作為GPAI模型提供者根據AIA法案第53條第1項(d)款必須公開提供的訓練內容摘要 (training content summary) 的一部分。 三、確保資訊品質、完整性及安全性(措施1.3) GPAI模型提供者應確保資訊的品質及完整性獲得控制,並保留控制證據以供證明遵循AIA法案,且防止證據被非預期的變更 (unintended alterations)。在制定、更新及控制資訊及記錄的品質與安全性時,宜遵循既定協議 (established protocols) 及技術標準 (technical standards)。 參、事件評析 一、所要求之資訊完整、格式標準清楚 歐盟AGPAI實踐準則」的「透明度 (Transparency)」提供模型文件的標準表格,做為GPAI實踐準則透明度章節的核心工具,從名稱、屬性、功能等最基本的模型資料,到所需軟硬體、使用政策、散佈管道、訓練資料來源、演算法設計,甚至運算與能源消秏等,構面完整且均有欄位說明,而且部分欄位直接提供選項供勾選,對於GPAI模型提供者提供了簡明容易的AIA法案資訊要求合規做法。 二、表格設計考量不同利害關係人的資訊需求 GPAI實踐準則透明度章節雖然主要目的是為GPAI模型提供者對由需要充分了解模型及其能力的下游提供者提供資訊,以便其在產品履行AIA法案下的義務。但相關資訊的提供目的,同時也在於讓AIO及國家主管機關履行其AI法案職責,特別是高風險AI的評估。因此,表格的資訊標示區分該欄資訊係用於AI辦公室 (AIO)、國家主管機關 (NCAs) 或下游提供者 (DPs)者,例如模型的訓練、資料清理處理方法、不當內容的檢測、測試及驗證的資料來源、訓練與運算的能秏、就多屬AIO、NCAs有要求時始須提供的資料,無須主動公開也兼顧及GPAI模型提供者的商業機密保護。 三、配套要求公開並確保資訊品質 該準則除要求GPAI模型提供者應記錄模型文件,並要求於網站等適當地,公開提供下游提供者請求的最新的資訊。而且應在不影響智慧財產權及機密商業的前提下,提供其他對使其充分了解GPAI模型的能力及限制的資訊。同時,為確保資訊的品質及完整性獲得控制,該準則亦明示不僅應落實且應保留證據,以防止資訊被非預期的變更。 四、以透明機制落實我國AI基本法草案的原則 我國日前已由國科會公告人工智慧基本草案,草案揭示「隱私保護與資料治理」、「妥善保護個人資料隱私」、「資安與安全 」、「透明與可解釋 」、「公平與不歧視」、「問責」原則。GPAI實踐準則透明度章節,已提供一個重要的啟示—透過AI風險評測機制,即可推動GPAI模型資訊的揭露,對相關資訊包括訓練資料來源、不當內容防止採取做一定程度的揭露要求。 透過相關資訊揭露的要求,即可一定程度促使AI開發提供者評估認知風險,同時採取降低訓練資料、生成結果侵權或不正確的措施。即便在各領域作用法尚未能建立落實配套要求,透過通過評測的正面效益,運用AI風險評測機制的資訊提供要求,前揭草案揭示的隱私、著作、安全、問責等原則,將可以立即可獲得一定程度的實質落實,緩解各界對於AI侵權、安全性的疑慮。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]The European AI Office, The General-Purpose AI Code of Practice, https://digital-strategy.ec.europa.eu/en/policies/contents-code-gpai 。(最後閱覽日:2025/07/30) [2]The European AI Office, Code of Practice for General-Purpose AI Models–Transparency Chapter, https://ec.europa.eu/newsroom/dae/redirection/document/118120 。(最後閱覽日:2025/07/30)