為求能妥善管理現暨有之歐洲專利與健全歐洲共同體專利制度,歐盟執委會(Commission)正致力於尋求各成員國同意,欲滙集境內能量,來建、整出一套「單一化」專利訴訟制度(Unified Patent Litigation System;簡稱UPLS),以解決境內智財爭議與相關衍生問題,來達到『鼓勵私人發明』及『刺激歐洲境內中小型企業 (Small & Medium Enterprises;簡稱SMEs)持續成長』等目標」。 目前,就已取得歐洲專利局(European Patent Office)所核發專利之專利權人而言,其雖可逐一於歐盟各成員國家中,利用該國專利訴訟程序來保障其自身之發明;然,由於利用不同成員國家之司法系統興訟,甚可能因各類商業習慣或其他種種因素,而致生不同之審判結果;因此,於現行歐洲專利訴訟制度下,除時間與成本外,業者亦須面對司法裁判上之高度不確定性風險。一位負責國際市場暨服務事務官員Charlie McCreevy指出:「已有許多業者表示,歐洲現行之專利訴訟制度,實相當地複雜且繁瑣;且於訴訟進行過程中,除須繳納許多費用外;至取得判決前,其所耗費之時間,亦相當冗長」。 有鑑於此,執委會正擬儘快協調各會員國並統整出一套單一化之專利訴訟制度,以提升訴訟結果之可預見性(Predictability)並減輕訴訟成本。大體而言,該項UPLS制度,應可為歐洲專利權人帶來如後數項利益:(1)提升專利訴訟結果之法律上確定性、(2)減輕訴訟成本與(3)促進專利訴訟制度之商業性近用等;而一位執委會官員補充:「事實上,建置單一化專利法院與訴訟系統,其目的,無非是欲借強化解決智財爭議機制之方法,來達到『鼓勵私人發明』及『刺激歐洲境內中小型企業持續成長』等目標」。 最後,根據一份由德國慕尼黑大學學者Dietmar Harhoff所提出之分析報告顯示,倘若能透過該項措施來避免「重複專利侵害訴訟」或「訴訟撤回」等問題,估計每年將可為業者省下高達1億4千8百萬至2億8千9百萬歐元之專利訴訟費用。
初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵初探與省思我國法制下之侵權行為適用於非依軌道行駛之自動駕駛車輛之過失內涵 資訊工業策進會科技法律研究所 2019年03月15日 壹、事件摘要 於2018年03月18日晚間10時許,美國亞利桑那州(Arizona,下稱Arizona)一名49歲的婦人,遭到配備Uber自動駕駛系統之車輛[1],在運行自動領航模式(Autopilot)下撞擊,雖然該婦人立即送往醫院,但仍回天乏術而在醫院中去世。就在前開事故發生後,Arizona州長Doug Ducey因此下令其暫停測試。[2] 此外,同年12月11日晚間10時許,在我國有一輛配備自動輔助駕駛功能的Tesla,疑似駕駛人精神不濟因而未能及時注意車前狀況,導致車禍發生,雖然肇責是否牽涉Tesla之自動輔助駕駛功能或駕駛人本身有無疲勞駕駛等情事,有待進一步釐清。[3] 綜上,不論測試或道路駕駛,現今社會已不乏具有一定自動駕駛等級之車輛於路上行駛,然而在推廣、研發或應用自動駕駛車輛(下稱自駕車)的同時,若不幸發生類似前開新聞之(車禍)事故時,相關肇事責任究應如何釐清,隨著我國已於2018年12月19日公布無人載具科技創新實驗條例以積極推動自駕車相關應用,更愈顯重要,為解決前開肇事相關疑慮,本文擬針對民事上之「過失」本質,反思自駕車相關應用可能延伸的事故責任,是否因應科技發展而有不同的過失內涵。 貳、重點說明 承上,面對自駕車相關科技與應用的世界洪流,若發生車禍等交通事故時,當事人相關之損害賠償請求,仍大多以民法上之侵權行為作為基礎,雖事故肇因種類眾多,亦常見各類的肇因共同造成事故發生,但本文考量相關議題繁複,以下僅就非依軌道行駛之自駕車、駕駛人過失內涵等框架下依序進行初探與反思: 一、我國侵權行為損害賠償係以行為人有無具抽象輕過失為斷 車禍之發生,若涉及駕駛人之行為者,受有不論財產或人身損害之人而欲請求賠償者,無論係依據民法第184條以下何條侵權行為之規定(即民法第184條第1項前段、同條項後段或第191條之2等規定),請求駕駛自駕車之人賠償,前提均為駕駛人具有過失,差別僅在舉證責任是否由請求權人(受有損害之人)負擔。 承上,既然前開侵權行為之重要成立要件為過失,其具體內容為則為駕駛人之注意義務應至何種程度,然在我國民事過失責任之架構上,有不同程度上之區分,即分別為抽象輕過失、具體輕過失及重大過失三種。申言之,抽象輕過失為欠缺應盡善良管理人之注意者義務;具體輕過失者為欠缺應與處理自己事務為同一注意者;重大過失者為顯然欠缺普通人之注意者[4]。 對此,實務見解[5]以及學者[6]歷來均認侵權行為之過失標準,應以行為人是否克盡客觀化之過失標準─抽象輕過失,倘否,則應負擔過失之賠償責任,是以,就此脈絡推論,自駕車之駕駛人若有違善良管理人注意義務致車禍發生且使他人受損害,即應負損害賠償責任。 二、駕駛人注意義務與自駕車自動駕駛程度間之互動 根據引領世界自駕車標準的領銜者─國際汽車工程師學會(Society of Automotive Engineers International,下稱SAE)所分類之自動化駕駛等級,區分為等級0至等級5(共6個等級),而等級3後之自駕車即開始逐漸將環境監控的任務從駕駛人移轉至車輛本身,而駕駛人僅在特殊條件下,方須接管駕駛車輛,更甚在等級5時是由自駕車在任何狀況下均可自行駕駛,不過在等級2前之等級,環境監控之任務大多在駕駛人身上,自駕車至多僅係協助運行駕駛人之指令[7]。 然而,自駕車駕駛人因車禍所生之侵權行為責任,誠如前述,係以駕駛人存有抽象輕過失作為前提,而過失之本質,則係雖非故意,但按其情節,(1)行為人(駕駛自駕車之人)應或能注意,卻不注意,或(2)雖可預見侵權行為(車禍肇事)之事實發生,但確信不發生[8],就此,在SAE分類等級2以前之自駕車,因監控環境之任務仍由駕駛人負擔,則該類等級自駕車之駕駛人應與一般車輛之駕駛人,負擔相同侵權行為之注意義務內容(或程度),但等級3至等級5自駕車之各式應用情境,車輛行駛環境之相關監控資訊已轉由車輛本身處理、控管,則駕駛人是否對於自駕車之車禍發生,仍具有可預見性,或得注意並防免之,則不無疑慮。 參、事件評析 綜上,本文所提不同等級自駕車,是否當然得以繼續適用傳統民事侵權行為之過失標準判斷駕駛人有無過失,實有相當程度上之衝突,蓋若自駕車之駕駛人對於行車環境資訊已不如駕駛一般車輛時,實難期待駕駛人對於車禍之發生有何預見可能,或在遇見後積極防免結果發生,倘若一概遵循傳統對車禍侵權行為之高注意義務要求─抽象輕過失責任,或將產生使不明瞭或難以預見該事故原因發生之人,卻必須就非因己誤之結果負責,某程度上似有違過失責任之本質,而質變成為無過失之擔保責任。 據此,本文認為,若要解決前開損害發生須有補償或賠償之問題,或可(1)透過保險、基金等方式填補損害,或(2)具體化等級3至等級5自駕車之駕駛人應負何等注意義務,如駕駛人須隨時處於得以接管車輛操作之狀態,使等級3以上之自駕車所應盡之注意義務與傳統侵權行為之注意義務脫鉤處理(3)與商品責任間進行相關的調和等,然而無論如何,對於此等問題或疑慮,究竟應採何方向或多方進行,甚或以其他方式解決,則有待後續更進一步的討論與分析。 [1] Uber於該州進行自動駕駛車輛之測試。 [2] ADOT director's letter to Uber halting autonomous vehicle tests, ADOT, https://www.azdot.gov/media/News/news-release/2018/03/27/adot-director's-letter-to-uber-halting-autonomous-vehicle-tests (last visited Mar. 21, 2019); Ryan Randazzo, Arizona Gov. Doug Ducey suspends testing of Uber selfdriving cars, azcentral, Mar. 26, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/26/doug-ducey-uber-self-driving-cars-program-suspended-arizona/460915002/ (last visited Mar. 21, 2019); Ryan Randazzo, Bree Burkitt & Uriel J. Garcia, Self-driving Uber vehicle strikes, kills 49-year-old woman in Tempe, azcentral, Mar. 19, 2018, https://www.azcentral.com/story/news/local/tempe-breaking/2018/03/19/woman-dies-fatal-hit-strikes-self-driving-uber-crossing-road-tempe/438256002/ (last visited Mar. 21, 2019). [3] 蘋果日報,〈台灣首例!特斯拉自動駕駛闖禍 國道上撞毀警車〉,2018/12/12,https://tw.appledaily.com/new/realtime/20181212/1482416/ (最後瀏覽日:2019/03/21)。 [4] 96年台上字第1649號判決。 [5] 19年上字第2476號判例。 [6] 王澤鑑,《侵權行為法》,自版,頁308-309(2011)。 [7] SAE International Releases Updated Visual Chart for Its “Levels of Driving Automation” Standard for Self-Driving Vehicles, SAE International, https://www.sae.org/news/press-room/2018/12/sae-international-releases-updated-visual-chart-for-its-%E2%80%9Clevels-of-driving-automation%E2%80%9D-standard-for-self-driving-vehicles (last visited Mar. 22, 2019). [8] 97年度台上字第864號判決。
法國CNIL重罰微軟因搜尋引擎Bing違法運用cookie法國國家資訊自由委員會(Commission Nationale de l'Informatique et des Libertés, CNIL)基於cookie聲明(cookie banner)違反法國資料保護法(Act N°78-17 of 6 January 1978 on Information Technology, Data Files and Individual Liberties)裁罰微軟愛爾蘭分公司(Microsoft Ireland Operations LTD,下稱微軟)搜尋引擎Bing,並根據cookie蒐集資料間接產生的廣告收入、資料主題數量及處理的資料範圍定出6千萬歐元之罰鍰額度,且要求微軟應於3個月內限期改正,如逾期按日處以6萬歐元罰鍰。本案是繼2022年1月6日以來,CNIL以相同理由分別對Google與Facebook裁罰1.5億及6千萬歐元罰鍰後,再增1件科技巨頭因違法運用cookie遭受裁罰之案例。本案對我國隱私執法機關參酌於數位環境中,應就cookie聲明如何進行管理之理由與細節,具有參考價值。 而本案微軟之搜尋引擎Bing遭受裁罰之理由,主要可分為二面向: 一、未經使用者事前同意,逕於使用者設備中設置cookie 依法國資料保護法第82條規定,業者利用cookie或其他追蹤方式針對使用者終端設備上的資料進行讀取或寫入資料前,應盡告知義務並取得使用者同意。惟搜尋引擎Bing在使用者造訪網站時,未經使用者同意便設置一種具有安全及廣告等多種用途的cookie(MUID cookie)於其電腦設備,且當使用者繼續瀏覽網站時,將會另設置其他廣告cookie,然微軟亦未就此取得使用者同意。 二、拒絕設置cookie與給予同意之方式便利性應相同 在有效同意的標準與具體判斷上,由於搜尋引擎Bing的cookie聲明第一階層僅提供「接受」與「設定」兩類按鈕,並未提供「拒絕」按鈕,因此使用者同意或拒絕設置cookie之流程便利性有其差異,並未一致,如下說明: (一)使用者同意設置cookie 如使用者同意設置cookie,僅需於cookie聲明的第一階層點擊「接受」按鈕,即完成設置。 (二)使用者拒絕設置cookie 若使用者欲拒絕設置cookie,需於cookie聲明的第一階層點擊「設定」按鈕;其後進入第二階層,使用者可於各類型cookie選擇開啟或關閉,再點擊「保存設定」按鈕,始完成設置。 是以使用者拒絕同意設置cookie與給予同意之方式,兩者的便利性並未一致。又因第二階層顯示默認未設置cookie,恐導致使用者誤以為網站並未設置cookie,故CNIL認為此種同意欠缺自願性而屬無效者。
人工智慧採購指南草案人工智慧作為一前瞻性技術,運用於公部門,可以降低成本、提高管理品質、節省基層公務人員時間,整體改善政府公共服務。然而AI技術進化以及市場發展過於快速,現有採購類型沒有可以直接適用AI採購的判斷標準範本。因此,英國人工智慧辦公室(Office for Artificial Intelligence)與產官學研各界進行研商後,於2019年9月20日發表人工智慧採購指南草案(Draft Guidelines for AI procurement),作為公部門採購AI產品與服務之準則。該指南旨在加強公部門採購人員能力、協助採購人員評估供應商,讓廠商可以隨之調整其產品和服務內容。 該指南提供採購人員規劃政府AI採購的方向,包含招標、公告、評選、決標到履約。但指南強調無法解決採購AI產品與服務時遇到的所有挑戰。 指南內容簡述如下: 在制定規範時應重視如何清楚闡述面臨到的問題,而非只是說明解決方案; 評估AI帶來的風險時應緊扣公共利益,在招標階段敘明以公共利益為核心,並有可能在招標、評選和決標階段變動評估標準; 在招標文件中確實引用法規和AI相關實務守則; 其他包含將AI產品的生命週期納入招標和履約考慮、為提供AI產品和服務的廠商創造公平競爭環境、需與跨領域的團隊進行採購討論、確保採購流程從一開始就建立資料管理機制等。