歐盟提出共同策略架構以打造完整之創新研發供應鏈

  歐盟執委會(The European Commission)於2011年2月9日提出「從挑戰到機會:邁向歐盟研發創新補助之共同策略架構」綠皮書(Green Paper - From Challenges to Opportunities: Towards a Common Strategic Framework for EU Research and Innovation funding,以下簡稱綠皮書),以整合現有研發創新補助機制(包括FP、CIP及EIT)、改善參與容易度、增進研發之科學影響及經濟價值為目標,提出以共同策略架構(Common Strategic Framework)作為歐盟未來創新研發補助機制的構想,希冀藉此串聯基礎研究、技術服務商品化及非技術性創新等環節,以打造完整之創新研發供應鏈(innovation chain)。

  歐盟共同策略架構包括了三大重點目標:1.聚焦於「提供歐盟一個世界級的科學基地」、「增進跨國間競爭」及「解決重大挑戰」;2.使歐盟研發補助更具吸引力且更易進入;3.建立更為一致的會計制度,使補助資金的使用更為容易。

  歐盟綠皮書在具體作法與詳細內容上雖有待擬定,但針對現有研發補助機制之改進已提出明確方向,包括:釐清補助目標、減少法規複雜性、增進補助的附加價值與影響力,同時避免資源重覆及分散、簡化參與程序、擴大補助計畫參與、透過補助增進競爭等。此外,執委會亦已預定於2011年底提出具體立法建議,未來此一立法將為歐盟科技研發補助架構帶來如何之變革與影響,值得密切注意。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 歐盟提出共同策略架構以打造完整之創新研發供應鏈, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5460&no=55&tp=1 (最後瀏覽日:2026/01/21)
引註此篇文章
你可能還會想看
Facebook粉絲專頁管理者是否負有保護用戶個資隱私之控制者(Data Controller)責任

  2018年6月5日歐盟法院針對Unabhängiges Landeszentrum für Datenschutz Schleswig-Holstein v Wirtschaftsakademie Schleswig-Holstein GmbH訴訟進行先訴裁定,擴大解釋《資料保護指令》(Directive 95/46/EC)之「資料控制者」範圍,認為Facebook和粉絲專頁管理者皆負有保護訪客資料安全的責任。由於「資料控制者」定義在《資料保護指令》與《一般資料保護規則》(GDPR)相同,因此裁定將影響未來使用社群媒體服務和平台頁面的個資保護責任。   本案起因德國Schleswig-Holstein邦獨立資料保護中心要求 Wirtschaftsakademie教育服務公司在Facebook經營之粉絲專頁必須停用,其理由認為Facebook和Wirtschaftsakademie進行之Cookie資料蒐集、處理活動並未通知粉絲成員且因此從中獲利,然Wirtschaftsakademie認為並未委託Facebook處理粉絲成員個資,當局應直接對Facebook要求禁止蒐集處理。歐盟法院認為Wirtschaftsakademie使用Facebook所提供之平台從中受益,即使未實際擁有任何個資,仍被視為負共同責任(jointly responsible)的資料控制者,應依具體個案評估每個資料控制者責任程度。   在原《資料保護指令》並未有「資料控制者需負共同責任」之規定,本案擴大解釋資料控制者範圍,對照現行GDPR屬於第26條「共同控制者」之規範主體,然而本案將資料控制者擴張到未實際處理資料之粉絲專頁管理者,是否過於嚴格?且未來如何劃分責任與義務,皆有待觀察。

歐盟執委會呼籲採取更嚴厲的手段解決垃圾郵件問題

  歐盟執委會(European Commission)日前再次呼籲歐盟各國加強處理公眾線上隱私威脅的問題。歐盟執委會所公佈的一項報告指出,雖然近年來歐盟各國皆有相關措施,例如課予垃圾郵件發布者罰款、有期徒刑等,但各國法令仍有相當大的差異。這項報告也認為,各國相關法律在歐盟電信法的改革之下,應更為明確且一致,並加強跨國合作。   歐盟執委會電信委員Viviane Reding表示,雖然歐洲的反垃圾郵件相關立法已有七年,但大部分的歐盟民眾仍受垃圾郵件影響。根據該報告,歐盟從2002年即已立法禁止發佈垃圾郵件及使用偵察軟體,但目前仍有約65%的民眾飽受垃圾郵件騷擾。   歐盟執委會的報告指出 : 目前幾乎所有會員國皆已設有相關網站,方便民眾取得垃圾郵件及偵查軟體的資訊或申訴。 在分析來自22國的140個案例後,發現各國所課予的罰款落差懸殊。罰款最高的依序為荷蘭(100萬歐元)、義大利(57萬歐元)及西班牙(3萬歐元 );但在羅馬尼亞、愛爾蘭及拉脫維亞等國,罰款的範圍則多在數百至數千歐元之間。 各級政府機關(電信主管機關、資料及消費者保護機關與執法機關等)責任劃分應更為明確,並有相互合作的機制。 垃圾郵件為全球問題,除了在歐洲境內的各國合作外,與世界各國的合作亦為重要。根據調查數據,平均每六封垃圾郵件中,就有一封是由美國境內所發出,因此目前歐盟執委會正與美國協商,討論雙方執行相關保護法規的跨境合作問題。 歐盟各國應分配足夠的資源予國內機關,以利蒐集證據、進行調查及起訴。 由歐盟執委會提出的歐盟電信法改革中,新增一條規定,要求違反各國國內線上隱私法的罰責必須為有效、實際且符合比例。

英國衛生部發布基因檢測與保險自律行為準則

  英國衛生部(Department of Health and Social Care)於2018年10月23日發布基因檢測與保險自律行為準則(Code on genetic testing and insurance-A voluntary code of practice agreed between HM Government and the Association of British Insurers on the role of genetic testing in insurance),該準則係由英國政府及英國保險業者協會(Association of British Insurers, ABI)共同制定,旨在取代先前的「基因與保險之協定與延期實施」(Concordat and Moratorium on Genetics and Insurance)文件,並以更易於理解的方式呈現原「基因與保險之協定與延期實施」之內容。   準則中列出八項承諾,此八項承諾為ABI代表其成員議定: 承諾一:保險業者(Insurers)會公平對待要保人(applicants)。保險業者不會要求或迫使任何要保人進行預測性或診斷性基因檢測;若要保人已進行預測性基因檢測,保險業者亦不會對其作出差別待遇,除非有如下之情況。 承諾二:列入附錄一之疾病類型並超過以下金額之保單,保險業者始得要求要保人提供預測性基因檢測之結果: 人壽保險-500,000英鎊 /人。 重大疾病險-300,000英鎊 /人。 收入保障險-30,000英鎊 /年。 目前列入附錄一之類型僅有亨丁頓氏舞蹈症(Huntington’s disease)之人壽保險總額超過500,000英鎊之情形。 承諾三:保險業者不會要求要保人提供:  要保人或被保險人於承保期間所進行之預測性基因檢測結果。 非為要保人或被保險人本人(如要保人或被保險人血親)之預測性基因檢測結果。 於科學研究背景下獲得之要保人或被保險人預測性基因檢測結果。 承諾四:若保險業者基於承諾二之規定要求要保人提供預測性基因檢測結果,亦不會針對該結果制定過於苛刻(disproportionate)的條款或條件。 承諾五:保險業者須於要保人簽約前提供明確之訊息,以說明:      根據本準則,要保人在何種情況下必須或無須提供相關預測性基因檢測結果。 若要保人自願提供對其有利的預測性基因檢測結果,保險決策將如何被影響。 承諾六:若要保人基於意外或自願向保險業者提供預測性基因檢測結果,保險業者可考量要保人之利益調整保單內容;若檢測結果對要保人不利,除非符合承諾二之情形,否則保險業者將忽略該檢測結果。 承諾七:販售人壽保險、重大疾病或收入保障保險之保險業者將:      每年向ABI報告其遵守本準則之情況。 根據本準則問答部分之詳細資訊,建立投訴程序(complaints procedure)。 每年向ABI報告與本準則運作上相關之投訴情形。 承諾八:販售人壽保險、重大疾病或收入保障保險之保險業者將指定至少一名經培訓之基因核保人(Nominate Genetics Underwriter, NGU),負責與遺傳資訊(genetic information)及遵守本準則相關之事項,且NGU之人數應與業務規模成比例。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

TOP