歐盟執委會(The European Commission)於2011年2月9日提出「從挑戰到機會:邁向歐盟研發創新補助之共同策略架構」綠皮書(Green Paper - From Challenges to Opportunities: Towards a Common Strategic Framework for EU Research and Innovation funding,以下簡稱綠皮書),以整合現有研發創新補助機制(包括FP、CIP及EIT)、改善參與容易度、增進研發之科學影響及經濟價值為目標,提出以共同策略架構(Common Strategic Framework)作為歐盟未來創新研發補助機制的構想,希冀藉此串聯基礎研究、技術服務商品化及非技術性創新等環節,以打造完整之創新研發供應鏈(innovation chain)。
歐盟共同策略架構包括了三大重點目標:1.聚焦於「提供歐盟一個世界級的科學基地」、「增進跨國間競爭」及「解決重大挑戰」;2.使歐盟研發補助更具吸引力且更易進入;3.建立更為一致的會計制度,使補助資金的使用更為容易。
歐盟綠皮書在具體作法與詳細內容上雖有待擬定,但針對現有研發補助機制之改進已提出明確方向,包括:釐清補助目標、減少法規複雜性、增進補助的附加價值與影響力,同時避免資源重覆及分散、簡化參與程序、擴大補助計畫參與、透過補助增進競爭等。此外,執委會亦已預定於2011年底提出具體立法建議,未來此一立法將為歐盟科技研發補助架構帶來如何之變革與影響,值得密切注意。
本文為「經濟部產業技術司科技專案成果」
《馬拉喀什條約》全名為《關於為盲人、視力障礙者或其他印刷品閱讀障礙者獲得已出版作品提供便利的馬拉喀什條約》(Marrakesh Treaty to Facilitate Access to Published Works for Persons Who Are Blind, Visually Impaired or Otherwise Print Disabled),2013年由世界智慧財產權組織(WIPO)通過,並於2016年9月30日生效。《馬拉喀什條約》目標是在保護智慧財產權的同時,亦能擴大視覺障礙者資訊及資源獲取的管道,允許盲人及視障者得複製已出版作品、簡化無障礙文本的印刷流通與授權,增加視障者閱讀機會。條約並要求締約方必須在國內法中明文對著作權人權利的例外與限制規定,允許被授權實體(例如為視力及閱讀障礙者服務的非營利性組織),製作圖書的無障礙格式版本,包括點字文本、大字本、數位化音訊等,並允許跨國境交換,均無須請求著作權人授權。 美國是目前擁有最多無障礙格式英文文本的國家。2019年1月28日,美國總統批准《馬拉喀什條約》後,美國成為了該條約的第50個締約國。條約在美國國內實施後,居住在條約締約國的視力障礙者將能立即獲得約550,000份無障礙文本。
美國先進製造國家計畫辦公室於今年(2015) 6月10日研提現況檢討報告與相關政策資料為檢視國內先進製造業復甦與計畫推進之近況,美國先進製造國家計畫辦公室(Advanced Manufacturing National Program Office, AMNPO)於今年(2015) 6月10日研提現況檢討報告與相關政策資料,該項報告主要可歸結「國內產業現況」、「計畫執行成效」與「法制組織」等重要面向 ,茲就該項報告之重點摘要如下: (一)國內先進製造產業現況檢視: 報告指出美國目前正喪失在先進產品領域全球領導地位,在進出口貿易呈現嚴重赤字,雖近年致力於先進製造之資源整合與共同研發等措施,然而,觀察基礎科研端到市場端仍存有落差。 (二)先進製造領域已設立45個研發創新中心: 研發創新中心為產業與學研機構共構之「區域應用性組織」,主要由學術研究聯盟、企業和區域管理機構所組成專注於扶持區域具經濟優勢之新興技術研發,發展在地技術能量。先進製造領域,截至目前為止,已設立45個研發創新中心。除透過研發創新中心之扶持外,另可透過中心之設立選定各該重點關鍵技術發展,間接培育美國各區域之先進製造技術之專業領域。美國境內研究型大學或非營利組織皆得提案申請,而獲選之區域創新研究機構可獲得聯邦政府5至7年資金補助,政府欲透過補助模式,扶持區域新創機構之自主運作與發展。而於七年發展階段後,該機構將形成財政自主,由該機構之行政委員會主導研發資金運用與分配。
日本循環經濟夥伴強化產官合作,攜手實現循環經濟日本經濟團體聯合會、環境省、經濟產業省於2021年3月設立「循環經濟夥伴」(JAPAN PARTNERSHIP FOR CIRCULAR ECONOMY,J4CE),其係為實現循環經濟(CE),而有賴政府、民間企業、國際機構等相關組織,建立劃時代的產官合作平台。 J4CE已成立一年,此段期間已進行三次產官間之對話,如於2021年12月21日係針對「實現循環經濟所新增之成本為何?」、「如何解決所生之成本?」為主題,提出促進循環經濟值幾個值得注意之企業事例。 例如:「新的商業模式」中,由損害保險日本興亞公司與Second Harvest Japan公司共同合作,當食品運送過程中發生事故,該食品被判定失去市場價值時,能將其捐贈給Second Harvest Japan公司,其捐贈花費之費用或損失,將由損害興亞公司負責給付其保險金,而Second Harvest Japan公司則將捐贈之食品提供給生活困窮家庭,其作法將有助社會支援、減少食品浪費;另有Panasonic等電器公司提供「照明」服務,但非燈泡的所有權出賣,而是以繳納使用費方式,提供LED燈給企業經營者,並提供相關修繕、動產綜合保險等服務,已達到省電效果、降低能源成本等。 而在2022年2月17日第3次產官對話中主要以「循環經濟的投資者觀點與資訊公開方法」為主題,為因應氣候變遷經濟產業省設立TCFD制度已受到企業經營者的高度關注,因此也期待J4CE在循環經濟中也能有相同作用。 然截至今日最大難題還是在於當使用再生資源應如何將同質材料作為資源來運用較為棘手,J4CE目前除了對研究開發給予支援外,亦考慮增加補助金及放寬其限制等方式進行。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現