網路中立管制在美國與歐盟的新發展

刊登期別
第22卷,第7期,2010年07月
 

※ 網路中立管制在美國與歐盟的新發展, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5494&no=57&tp=1 (最後瀏覽日:2026/01/25)
引註此篇文章
你可能還會想看
英國數位、文化、媒體暨體育部發布資料道德與創新中心公眾諮詢

  英國數位、文化、媒體暨體育部(Department for Digital, Culture Media & Sport, DCMS)於2018年6月13日發布有關資料道德與創新中心(Centre for Data Ethics and Innovation)之公眾諮詢,本次諮詢將於2018年9月5日截止。   在資料使用與人工智慧皆快速發展且對生活模式產生重大改變之背景下,英國政府認為企業、公民以及公部門對於資料及人工智慧的安全及道德創新都需要有明確規範以資遵循,以因應該領域快速發展而生的問題。為此,英國政府欲新建一個資料倫理與創新中心,該中心本身並不會對於資料及人工智慧的使用作出規範,主要係通過吸收各界的經驗及見解,統整這些經驗或見解並轉化為對政府現行監管方面缺陷之建議,該中心具有獨立諮詢之地位(independent advisory status),提供政府對資料及人工智慧相關議題之治理建議。   諮詢文件內指出中心作用及目標旨在提供政府政策指導,並與監管機構、研究機構、公民社會密切合作,以制定正確的政策措施;對於中心的活動及產出,政府認為中心可進行對於資料及人工智慧的分析及預測,並擬定最佳實務作法(如開發有效及合乎道德的資料及AI使用框架),進而向政府提供有助資料及人工智慧之安全及道德創新發展的相關建議。   本次公眾諮詢主要針對資料道德與創新中心之營運方式及重點工作領域徵詢意見,所提出問題大致上包括是否同意中心目前的職責及目標?中心該如何與其他機構進行合作?中心應採取哪些行動?是否同意目前建議的行動類型?中心需要哪些法定權力?中心如何向政府提交建議?是否應將中心提交之建議向大眾公開?   我國行政院於今(2018)年1月18日提出為期4年之「台灣AI行動計畫(2018-2021)」,計畫內容之五大重點為:(1)AI領航推動;(2)AI人才衝刺;(3)建構國際AI創新樞紐;(4)創新法規、實證場域與資料開放;(5)產業AI化,其中,第4點細部內容提及將建立高資安防護及親善介面之資料開放與介接平台,顯見我國政府正全力推動AI發展,亦對資料開放相關議題頗為重視。是以,英國資料道德與創新中心之發展在未來我國推動AI普及與產業AI化之進程上,似可提供我國參考方向,以健全AI發展之法制環境。

新加坡國會通過支付服務法修正案,以降低洗錢及犯罪風險

  隨著新型態支付服務應用不斷推陳出新,利用數位支付型代幣(digital payment token)進行洗錢與犯罪愈加猖獗,新加坡國會(Parliament of Singapore)於2021年1月4日通過「支付服務法修正案」(Payment Services (Amendment) Bill),擴大監管範圍,以降低與數位支付型代幣有關的洗錢、資助恐怖主義(money laundering and terrorism financing, ML/TF)及隱匿非法資產風險。   本次修正重點包含(1)賦予新加坡金融管理局(Monetary Authority of Singapore, MAS)更大權責,可要求支付服務供應商落實相關客戶保護措施,例如要求數位支付型代幣服務供應商所保管之資產與自有資產分開存放,以確保客戶資產不受損失;(2)將虛擬資產服務供應商(virtual assets service providers)納入法規監管,擴大數位支付型代幣服務定義,使其包括代幣轉讓、代幣保管服務與代幣兌換服務;(3)擴大跨境匯兌服務(cross‑border money transfer service)定義,凡是與新加坡支付服務供應商進行資金轉移,不論資金是否流經新加坡,皆受新加坡金融管理局監管;(4)擴大國內匯款服務(domestic money transfer service)範圍,以涵蓋收付雙方均為金融機構之情形。   新加坡金融管理局表示,本次修法目的是為了因應支付服務產業的廣泛應用,降低潛在犯罪風險與維護金融安全,有效保護消費者權益,並維持金融穩定性與維護貨幣政策有效性。

歐盟公布人工智慧白皮書

  歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。   在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。   而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。

歐洲專利局發布人工智慧與機器學習專利審查指南正式生效

  歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。   在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。   其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵:   (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。   (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。   在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。   近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」

TOP