歐盟新一代關鍵資訊基礎設施保護計畫

  2011年3月31日,歐盟執委會啟用新一代的關鍵資訊基礎設施保護計畫(Critical Information Infrastructure Protection, CIIP)。上一代的關鍵資訊基礎設施保護計畫在2009年公布並已取得一定的成果。新一代的計畫集中在全球化的挑戰,著重在歐盟成員國與全球其他國家的合作,與相互之間的合作關係。

  為了達成這個目標,歐盟執委會訂定以下的行動綱要:
(1)準備和預防:利用成員國論壇(European Forum for Member States, EFMS)分享資訊及政策。
(2)偵測和反應:發展資訊分享及警示系統,建置民眾、中小型企業與政府部門間的資訊分享、警示系統。
(3)緩和及復原:發展成員國間緊急應變計畫,組織反應大規模網路安全事件,強化各國電腦緊急反應團隊的合作。
(4)國際與歐盟的合作:根據歐盟成員國論壇所制訂的,歐洲網際網路信賴穩定指導原則和方針,進行全球大規模網路安全事故的演習。
(5)制訂資訊通信技術的標準:針對關鍵資訊基礎設施制訂技術標準。

  另外,在2011年4月14-15日舉行的關鍵資訊基礎設施保護電信部長級會議(Telecom ministerial conference on CIIP),整個會議針對歐盟成員國、私人企業、產業界及其他國家進行策略性的對話,強化彼此在數位環境中的合作與信任關係。並針對新一代的關鍵資訊基礎設施保護計畫,向歐盟執委會提出相關政策建言。

  受全球化、資訊化發展的影響,以及各國間互賴程度的增加,使得影響關鍵資訊基礎設施(CIIP)安全的問題,不再侷限於單一區域,更需要各方多元的合作。

相關連結
※ 歐盟新一代關鍵資訊基礎設施保護計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5496&no=57&tp=1 (最後瀏覽日:2026/01/10)
引註此篇文章
你可能還會想看
日本農林省研議農業AI契約指引

  日本為提高農產品品質及附加價值,近年積極推動智慧農業,鼓勵利用AI等新技術研發農業產品和相關服務,惟技術研發需要使用大量資料訓練AI模型,部分農業工作者擔心自身經驗及知識等資料在研發過程中外洩,為避免上述狀況發生,農林水產省於2019年7月9日召開「農業AI利用契約指引檢討會」(農業分野におけるAIの利用に関する契約ガイドライン検討会),研議「農業AI利用契約指引」,防止在進行AI相關應用研發時,農業工作者提供之資料不慎外洩或遭到不當利用,導致其權益受損。   「農業AI利用契約指引檢討會」於2019年12月19日舉辦第3次會議,公布農業AI利用契約指引草案,草案內容包括(1)總論︰說明本指引之制定目的、農業與AI的關係,以及本指引與其他類似指引之差異和適用範圍;(2)農業AI產品、服務契約基本事項︰說明利用AI研發之農業產品和服務相關之智慧財產權,契約要件(契約目的及契約當事人等)及農業AI模型研發流程等基本概念;(3)農業AI產品、服務契約注意事項︰說明AI產品和服務契約之特徵和注意事項,以及利用AI等新技術進行研發之當事人訂定契約時應注意的問題,如農業工作者所提供之資料的重要性、以及個人資料的處理方式等;(4)契約範本︰針對農業AI研發契約、農業AI產品和服務利用契約,以及向第三方提供農業資料之契約,說明契約內容重點及提供範本供作參考。

實現綠色工業 政府推動PC業G計畫

  將於 2006年中實行之歐洲環保指令,規定輸入歐盟的電子產品材料、及其後續回收等作業流程,皆須符合廢電子電機設備(Waste Electronics and Electrical Equipment,WEEE)以及有毒物質禁制令(Restriction of Hazardous Substances,ROHS)兩大法規。為此,經濟部於27日宣布啟動「寰淨計畫(G計畫)」,將結合系統廠商、檢測驗證機構、資訊服務業者等單位,以系統廠商帶動下游供應商的方式,加速國內電腦廠商推出符合環保規範的產品,目前所知包括華碩、神達、大眾等電腦廠商,都已經投入了此計畫。   本次所涉廢電子電機設備 (WEEE) 法規,是關於廢棄電子、電機產品的回收再利用,規定自2005年8月13日後所生產的產品需由生產者進行回收,範圍含括家用設備、資訊通訊設備、玩具休閒與運動設備、醫療裝置等產品。   另一則是有毒物質禁制令 (ROHS),其明列自2006年7月後,製程、設備及材料處理研發禁止使用6種有毒物質,如鉛、汞、鎘等,內含六項管制物質的產品將不可在市面流通,屆時輸歐的電子、電機產品皆必須符合該標準。   另針對回收問題,經濟部表示將輔導國內廠商建立綠色產品回收體系及回收管理平台之示範系統,並在日後將 G計畫推廣對象擴及產險公司,以協助業者因應違反歐盟規範所生之求償索賠,並建立風險控管機制。

歐洲法院裁定銷售二手電子書侵害著作權

  Tom Kabinet為荷蘭之公司,其從個人及零售商處購得電子書後,再於網路轉售,遭為保護荷蘭出版商利益而成立之Nederlands Uitgeversverbond(NUV)及Groep Algemene Uitgevers(GAU)二協會提起侵害著作權訴訟。   Tom Kabinet公司主張,當書籍以有形體的形式出售時,該作品之著作權業已耗盡(exhausted),換言之,購買者可自由出售,而不會侵害作者或出版者的智慧財產權,此原則亦應適用於數位重製(digital copies)。NUV及GAU則認為Tom Kabinet公司轉售電子書的行為,構成著作權指令(Directive 2001/29/EC)所指在未經授權的情形下,向大眾傳播受著作權保護的標的。   歐洲法院近日針對雙方的爭議做出了裁決,法院援引世界智慧財產權組織(World Intellectual Property Organization)的著作權條約(Copyright Treaty),認為著作權的耗盡原則僅適用在著作權指令第4條的散布權(Distribution right),且是散布實體物,例如有形的書籍。而著作權指令第3條所指「向大眾公開(作者的)作品權利」(Right of communication to the public of works),係賦予作者有授權向大眾公開其作品的專屬權,此權利無耗盡的問題。本案所爭執向大眾轉售經下載且得永久使用的電子書之行為,並非散布權,而是向大眾傳播的概念,即符合著作權指令第3條所規範之範疇,因此,Tom Kabinet公司在轉售電子書前,須先取得作者的同意。   針對歐盟法院此一裁定,GAU發表聲明表示,法院的決定讓電子書的著作權議題有了結果,且此決定亦會影響音樂和電影產業,讓音樂和電影的下載拷貝版本同樣也無法再轉售。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP