避免昂貴訴訟成本,微軟參與專利審查團隊

  微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。

  Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。

  根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。

  受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。

  Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。

相關連結
※ 避免昂貴訴訟成本,微軟參與專利審查團隊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5519&no=57&tp=1 (最後瀏覽日:2026/02/12)
引註此篇文章
你可能還會想看
因應國際法規變動趨勢的營業秘密管理建議

因應國際法規變動趨勢的營業秘密管理建議 資訊工業策進會科技法律研究所 2024年06月24日 因應技術進步導致資訊的存取與分享更加容易,營業秘密侵權爭議也隨之增長,綜觀國際政策推動或許多跨國智財專家均逐漸重視營業秘密爭議相關議題,並論及營業秘密相關法規趨勢、訴訟經驗、建議企業可執行的營業秘密管理做法等,以下將綜整相關趨勢與專家觀點並提出我國企業建議。 壹、法規變動趨勢 從國際趨勢以觀,各國針對「競業禁止」規定,有逐漸對其嚴格審查與進行法規監管的趨勢,而這也使得透過限制性條款避免機密資訊外洩的難度提高,企業多轉而透過營業秘密管理來加強防護。 一、競業禁止 本文列舉了近期美國與英國對於競業禁止法規監管的趨勢。 (一)美國將從聯邦層級禁止「競業禁止」條款 美國聯邦貿易委員會(Federal Trade Commission,下稱FTC)於今年,2024年4月23日推出一項最終規定「Non-Compete Clause Rule[1]」,該規則將針對除了高級管理人員以外之員工,使僱主與員工之間已簽訂競業禁止協議無效,並禁止未來僱主與員工簽訂競業禁止合約。 (二)英國擬立法限制「競業禁止」之最高法定期限 英國目前的競業禁止相關限制係基於英美法,以法院的個案判決及既判例來執行。英國政府於2020年12月4日至2021年2月26日期間向公眾進行諮詢,並就諮詢意見之政府回覆於2023年發布報告[2],英國政府在該報告中提出,就目前國際實務上競業禁止條款之執行期間除了美國部分州已直接被禁止外,多半未進行太多限制,如德國最高為24個月、義大利最長可達三至五年,而英國政府提出其擬將在議會時間允許的情況下提出立法領先引入「最多三個月[3]」之上限,對於競業禁止條款進行限制。 二、合理保密措施 承上所述,基於「競業禁止」條款的效力可能因為政策、法規變動或在不同國家的規定不同而導致已簽署之競業禁止條款失去效力、尚未簽署之契約禁止再簽署競業禁止條款或只允許在受有限制之情況下簽署等,企業透過此類限制性條款來避免機密資訊外洩的難度提高,使的企業多轉而透過其他日常營業秘密管理措施來加強防護,及證明企業有落實營業秘密的「合理保密措施」之法律要件。 以美國加州為例,該州多年前就禁止「競業禁止」約定,故當地企業早已轉往透過建置營業秘密政策和保護措施來加強防護。 貳、具體營業秘密管理措施之建議 一、合理保密措施之目的 合理保密措施除了作為補足無法使用限制性條款(競業禁止條款)之替代管制措施具有「預防營業秘密洩漏之效果」以外;更具有在營業秘密侵權發生後,訴訟上舉證之用。許多智財實務專家表示,無論是在哪一國法規的管轄下,權利人共通性的困難多在於訴訟的舉證上,因此專家建議企業應留存營業秘密管制措施之執行紀錄以作為將來涉訟時舉證之用。 二、營業秘密管理之具體作法 參照實務上專家的建議,本文彙整將實務上被推薦之具體營業秘密管理做法[4]羅列如下: (一)確立並可以識別營業秘密範圍 對於企業而言,首先應識別並記錄出營業秘密(機密)範圍,才能明確管制措施的範圍,並透過機密的標示(例如浮水印)來使員工能夠認知到接觸的資訊為公司重要的營業秘密。 (二)監控 針對下載、複印、數據傳輸行為或者其他可能包含機密資訊之公司設備等行為公司應進行監控。 (三)使用行為管制 公司應限縮傳播範圍(包含禁止員工通過電子郵件將資訊發送到個人電子郵件或將機密文件攜出公司等);並於不使用時妥善存放保管並上鎖或設置密碼管控。 (四)人員管制 員工作為營業秘密管控機制重要的一環,專家建議應對員工進行教育訓練(告知營業秘密重要性或提供有關如何識別和保護機密資訊的培訓);與相關人員(員工、承包商、合作單位)簽署保密契約(confidentiality agreements)明確定義機密資訊之範圍以及禁止未經授權的使用與揭露;設立離職員工管控機制(包含離職面談、保存相關設備、甚至如果員工可能進入競爭對手工作,企業可評估是否進一步請合格第三方進行鑑識或取證員工身上是否攜帶機密資訊等,以作為未來若涉訟之舉證)等。 參、評析 綜上所述,企業或許已經理解建立合理保密措施並留存作為訴訟時舉證之證據的重要性,並了解些許零散的管理做法,但可能產生管理措施如何才算是完善的疑問,為了提供企業更全面的管理建議,資策會科法所創意智財中心以其在智財領域之研究與實務經驗的積累發布「營業秘密保護管理規範」[5](下稱管理規範)將管理措施透過十個單元建立PDCA管理循環。 經查,上述國際法規變動下實務專家討論之營業秘密管理措施均包含在管理規範內,如「(一)確立並可以識別營業秘密範圍」會對應到管理規範第4單元「營業秘密的確定」章節;「(二)監控」會對應到管理規範之第5單元「營業秘密的使用管理」及第7單元「網路與環境設備管理」;「(三)使用行為管制」會對應到管理規範之第5單元「營業秘密的使用管理」;「(四)人員管制」會對應到管理規範之第6單元「員工管理」與第8單元「外部活動管理」。 管理規範除了提供更加多元完善的管理做法(如定義出的營業秘密應進行機密分級、設定保密期限建立管理清單;除了管制流通、複製行為,後端的銷毀或使用紀錄留存、預警措施之建立也很重要;對於員工的管控不僅是離職時,更是從入職時就有風險需要管控;或者更後端的爭議處理機制、監督與改善機制之建立等)以外,更重要的是,管理規範納入了企業應考量的相關法律風險,以「(二)監控」之建議為例,管理規範第6.3.2條進一步要求應對員工進行「宣導」,告知員工「會監控其使用營業秘密行為並保存相關電磁紀錄」,此規定對於企業而言十分重要,因為若未進行告知,可能會因為侵害員工的隱私權,違反刑法妨害秘密罪以及通訊保障及監察法之違法監察通訊罪,而使雇主被判刑。 由此可知,企業在建立營業秘密合理保密措施之相關機制時,亦需要注意措施的完善與合法性,企業除了可參考管理規範系統性建立營業秘密管理機制外,亦可以此管理規範做為檢視自身管理措施符合性之依據,進而促進企業有效落實營業秘密管理。 [1]Federal Trade Commission, FTC Announces Rule Banning Noncompetes (2024), https://www.ftc.gov/news-events/news/press-releases/2024/04/ftc-announces-rule-banning-noncompetes (last visited May 15, 2024). [2]Consultation outcome Measures to reform post-termination non-compete clauses in contracts of employment, GOV.UK, https://www.gov.uk/government/consultations/measures-to-reform-post-termination-non-compete-clauses-in-contracts-of-employment#full-publication-update-history (last visited Jun. 19, 2024). [3]同前註,引述原文:「The government will introduce a statutory limit on the length of non-compete clauses of 3 months and will bring forward legislation to introduce the statutory limit when parliamentary time allows.」。 [4]Q&A: Trade secret disputes, Financier Worldwide Magazine, Financier Worldwide Magazine, https://www.financierworldwide.com/qa-trade-secret-disputes (last visited Jun. 05, 2024). [5]<營業秘密保護管理規範>,財團法人資訊工業策進會科技法律研究所網站,https://stli.iii.org.tw/publish-detail.aspx?no=72&d=7212(最後瀏覽日:2024/06/14)。

日本公布《空中移動革命藍圖》

  日本經濟產業省與國土交通省共同組成的「空中移動革命之官民協議會」(空の移動革命に向けた官民協議会),於2018年12月20日第4次會議中公布《空中移動革命藍圖》(空の移動革命に向けたロードマップ,以下簡稱「本藍圖」),期待飛天車(electric vertical take-off and landing, eVTOL)的實現可在都市交通阻塞時或欲前往離島、山間地區等情形下,提供新移動方式,也可運用於災害時的急救搬運及迅速運送物資等。   本藍圖之「飛天車」係電動垂直起降型的自動駕駛航空機,外型近似直升機,並規劃三條發展路線:實際應用目標、制度及標準之整備、機體及技術之研發。從實際應用目標出發,本藍圖規劃自2019年開始進行飛行測試和實證實驗,以2023年投入運用為目標。首先從運送「物品」開始進展到「部分地區的乘客」,2030年代將再進一步擴大實用到「都市中的乘客」。也可應用於災害應變、急救、娛樂等方面。   為了實現上述目標,即需整備機體安全性、技能證明等及未來投入商業應用時所需之各項標準及制度。當然機體及技術之研發也相當重要,透過試作機研發確保並證明機體安全性及可靠性、自動飛行之機上及地面管理系統、確保達到商業化程度的飛航距離及靜肅性之技術。並設定於投入應用後的2025年開始,重新檢討制度及提升技術。

美國聯邦法官指出藥用基改作物之種植應予嚴格管理

  美國聯邦法院最近判決美國聯邦官員在 2001 年及 2003 年,允許四家企業在夏威夷種植基改作物以生產試驗用藥的行為,違反環境法規。該許可內容涉及許可在夏威夷州 Kauai, Maui, Molokai and Oahu 種植玉米或甘蔗。   本案法官 Michael Seabright 判決中特別指出,鑑於夏威夷州乃是許多瀕臨絕種或受到絕種威脅的生物的棲地-該州計有 329 種罕見生物,占全美瀕臨絕種生物及受到絕種威脅生物種類之四分之一,而美國農業部動植物健康檢疫服務( Department of Agriculture's Animal and Plant Health Inspection Service )在許可種植基改作物前,竟未先進行初步的環境檢視( preliminary environmental reviews ),很明顯地已違反該機關依據瀕臨絕種生物法( Endangered Species Act )及國家環境政策法( National Environmental Policy Act )所應盡之義務。   本案原告 EarthJustice 認為,本案是第一件聯法院就 biofarming 所做之判決。所謂 biopharming 係指研究人員利用基改技術將植物用來作為生產藥品、抗體、疫苗等生技藥物的生物反應器( bioreactors )。由於植物可以大量栽種,因而若 biopharming 技術可行,將可有效解決生技藥物供給短缺的問題,嘉惠更多的病患,因而, biopharming 被視為未來可能顛覆傳統的藥物生產的一種生技藥物製造方式。目前, biopharming 廣泛使用的植物包括玉米、煙草等。   biopharming 的構想可以較低的成本解決部分生技藥物生產的問題,但其構想看似極具吸引力,不過發展 biopharming 並非毫無挑戰,尤其是如何就藥用基改植物予以隔離管理,避免基因污染。反對者一般主張,藥用基改植物 並未通過食用安全性測試,並不適合人體食用或是當作家畜飼料, 如果栽種藥用基改植物的隔離管理未做好把關,難保這些本應受到嚴格管制的治療性植物進入到食物供應鏈,影響民眾的身體安全。   在民眾健康及環境生態安全的考量下,反對推展 Biopharming 的力量也越來越大,本案即是一個明顯的例子。

德國公佈聯邦政府人工智慧戰略要點

  德國政府於2018年7月18公佈「聯邦政府人工智慧戰略要點」(Key points for a Federal Government Strategy on Artificial Intelligence),係由德國聯邦經濟事務及能源部、聯邦教育及研究部,與聯邦勞動及社會事務部共同撰寫而成。 德國政府表示該要點將作為推動人工智慧技術與產業發展的基礎方針,並希望以負責任的方式以及朝向社會利益發展的方向進行人工智慧開發與應用。   德國人工智慧戰略要點摘要如下: 1. 研究能量:必須大幅增加研究支出並且爭取世界一流人才。 2. 人工智慧能力應泛分佈在社會各處:各學科與產業領域皆需要人工智慧。 3. 資料作為人工智慧發展的基礎:資料是人工智慧發展的重要關鍵,德國的資料發展重點將放在資料品質的強化。 4. 基礎設施:人工智慧中重要的技術「深度學習」,不僅需要大量資料,同時還需要強大的計算能力,德國需要加強計算能力的硬體設備。 5. 經濟應用:德國數位化發展的下一步需要仰賴人工智慧技術,尤其是中小企業採納人工智慧技術方面將會是焦點之一。 6. 社會法制:人工智慧發展過程中牽涉許多道德以及法制、監管議題,德國政府認為這些都必須請不同利害關係人共同公開討論。 7. 國際合作:德國作為歐盟會員國之一,未來的人工智慧發展將力求與歐盟各國合作。   整體而言,德國的人工智慧戰略著重在建立人工智慧生態系統,並強調人與機器之間的合作關係,為人工智慧產業發展奠定良好基礎。德國政府將基於此要點繼續制定進一步的人工智慧戰略,並預計將於2018年12月公佈德國的人工智慧戰略完整報告。

TOP