微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。
Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。
根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。
受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。
Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。
消費者評論服務Angie's List於本月在印第安納州提起一項聯邦訴訟,對象是Amazon Local。Angie's List作為當地交易網站,提供高達75%的本地服務,包括產品和使用經驗。但Amazon Local員工卻通過註冊成為Angie's List的會員,以獲得其他會員名單和下載網站所提供的文件,也包括其他會員的評論和相關資訊。因此20餘名Amazon Local員工被列為共同被告。 該訴訟聲明中指控相關資訊被Amazon Local所使用,用以在西雅圖建立一個競爭性的服務。Angie's List在訴訟中指稱,他在會員協議“明確禁止使用Angie's List的帳戶和資料用於商業目的”,但Amazon Local員工卻違反了契約。“Amazon Local沒有投入必要的時間,資源和合法手段發展自己的研究與Angie's List競爭,相反的,Angie's List和它的員工都選擇了秘密訪問和挪用Angie's List專有信息的快捷方式。 Angie's List指控Amazon Local違反商業機密,竊盜,侵入電腦,民事侵權,電腦欺詐與濫用盜用行為和違反契約。Angie's List請求法院判決Amazon Local賠償其損失,並禁止Amazon Local再使用Angie's List,包括已經得到的資訊。Angie's List也請求未規定的損害賠償,“不當得利”和懲罰性的和其他損害。
歐盟發布新人工智慧規範,以風險程度判斷防止科技濫用歐盟執委會於2021年4月21日提出「人工智慧規則」(AI regulation)草案,成為第一個結合人工智慧法律架構及「歐盟人工智慧協調計畫」(Coordinated Plan on AI)的法律規範。規範主要係延續其2020年提出的「人工智慧白皮書」(White Paper on Artificial Intelligence)及「歐盟資料策略」(European Data Strategy),達到為避免人工智慧科技對人民基本權產生侵害,而提出此保護規範。 「人工智慧規則」也依原白皮書中所設的風險程度判斷法(risk-based approach)為標準,將科技運用依風險程度區分為:不可被接受風險(Unacceptable risk)、高風險(High-risk)、有限風險(Limited risk)及最小風險(Minimal risk)。 「不可被接受的風險」中全面禁止科技運用在任何違反歐盟價值及基本人權,或對歐盟人民有造成明顯隱私風險侵害上。如政府對人民進行「社會評分」制度或鼓勵兒童為危險行為的語音系統玩具等都屬於其範疇。 在「高風險」運用上,除了作為安全設備的系統及附件中所提出型態外,另將所有的「遠端生物辨識系統」(remote biometric identification systems)列入其中。規定原則上禁止執法機構於公眾場合使用相關的生物辨識系統,例外僅在有目的必要性時,才得使用,像尋找失蹤兒童、防止恐怖攻擊等。 而在為資料蒐集行為時,除對蒐集、分析行為有告知義務外,也應告知系統資料的準確性、安全性等,要求高度透明化(Transparency obligations)。不只是前述的不可被接受風險及高風險適用外,有限風險運用中的人工智慧聊天系統也需要在實際和系統互動前有充足的告知行為,以確保資料主體對資料蒐集及利用之情事有充足的認知。 在此新人工智慧規範中仍有許多部份需要加強與討論,但仍期望在2022年能發展到生效階段,以對人工智慧科技的應用多一層保障。
歐洲央行提出7500億歐元之「緊急債券收購計畫」以因應新冠肺炎疫情歐洲央行(European Central Bank, ECB)於2020年3月18日提出7500億歐元之「緊急債券收購計畫」(Pandemic Emergency Purchase Programme),紓困金額占歐盟年GDP之7.3%,以協助歐盟面臨新型冠狀病毒(covoid-19)所帶來之經濟衝擊,同時也減緩再生能源產業因疫情所帶來之影響。 就此,歐洲央行總裁Christine Lagarde表示,對於紓困對象及方法,歐洲央行將採取不分產業類別自市場購買公債或私人債券之方式,以因應疫情所帶來之影響,其中也包含歐盟投資銀行(European Investment Bank, EIB)所發行之「綠色債券」(Green Bond)。又綠色債券係歐盟投資銀行於2007年所發行,又名「氣候意識債券」(Climate Awareness Bond),職是故,歐洲央行針對歐盟投資銀行綠色債券進行紓困將使再生能源產業蒙受其利。 依歐洲央行之「緊急債券收購計畫」,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買,亦即歐洲央行僅得自價證券買賣之交易市場購買債券,而不得直接購買首次出售之有價證券,此項限制,也包含歐盟投資銀行所發行之綠色債券。 以歐盟投資銀行綠色債券為例,歐洲央行之操作機制在於透過此項購買手段,提升歐盟投資銀行綠色債券之市場價格,同時讓歐盟投資銀行面對投資人時,可以享有較為優渥之議價空間,以降低歐盟投資銀行未來所要付給投資人之利率。同時歐洲央行可再進一步降低對於歐盟投資銀行之利息,進一步降低歐盟投資銀行因發行綠色債券所帶來之利息壓力,促使綠色產業得以因應疫情之衝擊。 如此歐洲央行即達成其目的,減緩投資市場之震盪,同時達到振興經濟產業效益。這也是為何,歐洲央行僅得自次級市場(Secondary Market)購買債券,而不得直接自初級市場(Primary Market)購買債券之原因。
歐洲藥品管理局更新利益衝突規範歐洲藥品管理局(The European Medicines Agency,EMA)於3月底至6月初陸續發布四份利益衝突範。包括「處理管理董事會利益衝突政策方針」(European Medicines Agency Policy on the Handling of Conflicts of Interests of the Management Board),將董事會自過去的利益衝突獨立出來單獨規範;並針對違反利益聲明揭露訂立「EMA科學委員會和專家違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts),和「EMA管理董事會違反利益衝突信賴程序」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Management Board Members);以及修定「處理管理董事會、科學委員會成員和專家利益衝突政策方針」(European Medicines Agency Breach of Trust Procedure on Conflicts of Interests for Scientific Committee Members and Experts)。 針對專家和管理董事會所制定的處理利益衝突規範,主要目的是確保兩者在參與EMA的活動時,不會發生與醫藥業者相關聯的利益衝突,影響EMA公正性。觀察上述規範,可以發現EMA對於專家和管理董事會兩者的規範原則相當一致,皆聚焦於增進利益衝突處理過程的強健性(robustness)、有效性(efficiency)和透明性(transparency)。分別規範的原因在於兩者功能上的區別,分述如下: 1. 專家規範層面,有鑒於在先進醫藥領域中的專家有限,缺少可替代性,因此規範目的在於兼顧公正性與專業之間的平衡; 2. 管理董事會層面,由於其主要任務為監管和決策,規範上區別成員所參與活動的程度和範圍做更為細部的規範,與專家不同,並非有利益衝突就必須迴避。 為進一步加強EMA處理利益衝突的強健性,EMA科學委員會和專家,以及管理董事會違反利益衝突信賴程序的主要規範內容為專家和管理董事會成員作出不實利益聲明時,EMA的處理程序。可區分為調查、聽證與修正三個階段,分述如下: 1.調查階段,首先調查系爭當事人是否為不實之利益聲明後,評估是否啟動違反利益衝突信賴程序; 2.聽證階段,召開聽證會,聽證系爭當事人陳述觀點。倘若確定違反利益衝突信賴,系爭當事人即自EMA除名; 3.修正階段,EMA將審查系爭當事人曾經參與科學審查案件的公正性,並評估是否進行補救措施。 雖然EMA對於專家是否確實聲明利益缺少強制力,然而仍能透過新的利益衝突機制設計,看出EMA對完善利益衝突規範的企圖,值得近來正在修訂利益衝突機制的我國學習。