避免昂貴訴訟成本,微軟參與專利審查團隊

  微軟成為crowdsourcing(集結式資訊來源)服務的第一會員,其服務用於對抗專利流氓(patent trolls)所提出昂貴的訴訟,挑戰將訴訟中所使用的軟體專利使之無效。

  Litigation Avoidance是由全球線上社群100萬名科學家及技術人員所組成的Article One Partners所建立的一種付費服務。該組織採用crowdsourcing,其為透過網際網路所採用的一種社交媒體工具,藉由找出前案或先前揭露資料中證明專利無效之證據。而Article One所取得的利潤是由使用crowdsourcing資訊的企業而來的,但並未對外揭露收費的價格。

  根據Article One指出,Litigation Avoidance主要針對的目標是專利流氓,其為購買大量專利,透過所買的專利向其他企業提出訴訟,進而要求權利金或授權金。

  受到專利流氓提出訴訟的微軟指出,Litigation Avoidance服務將是應訴前調查專利品質的另一種工具。微軟首要專利律師Bart Eppenauer說明,”使用Litigation Avoidance服務其目的為降低風險及降低潛在的訴訟成本”。

  Article One試圖解決問題之一,為crowdsourcing技術可於數周內得到專利評估結果,可取代需花費數月或數年始得產生結果的美國專利商標局低效能的專利審查系統。

相關連結
※ 避免昂貴訴訟成本,微軟參與專利審查團隊, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=5519&no=57&tp=1 (最後瀏覽日:2025/12/03)
引註此篇文章
你可能還會想看
美國政府設立Apps.gov網站推動雲端科技運用

  美國政府在9月15日宣布,為了減少基礎建設的相關費用以及降低政府運算系統的環境衝擊,因此設立Apps.gov網站,展示並提供經政府認可的雲端科技運用。   據美國聯邦政府CIO Vivek Kundra表示,Apps.gov網站是美國政府首度對外發表,針對減少IT花費政策的成果。目前美國政府IT預算幾乎都花費在設立資料中心,單在國家安全部下就設有23個資料中心,而這也造成了聯邦政府的資源消耗在2000年到2006年間增加了兩倍,為了落實減少基礎建設花費的政策,並基於安全性的考量,希望能夠盡量利用現有的系統。   美國政府目前推動的雲端運算倡議計劃有三個主要內容,第一個主要內容即為全新的Apps.gov網站,提供企業一個情報交換平台、社交媒介與雲端IT服務。雖然目前網站尚未完全運作,甚至還曾造成一連串的錯誤訊息,但美國政府當局仍希望該網站最終能成為一次即可滿足的服務商店(one-stop shop),可在一個平台上提供多種類的雲端運算服務。Kundra表示,美國能源部已經開始使用該網站執行部分相關業務。   該計畫的第二個重點則是預算,美國政府在2010年將會致力推動雲端運算領航計畫,並為此編列年度預算,希望能投入更多輕量的工作流程(lightweight workflows)至雲端科技的發展。而在2011年,美國政府則預計會發布相關指導準則至各機關部門。   最後,該計劃亦會配合安全性、隱私及採購等相關政策。Kundra表示,將會確保所有資料都受到完善保護。   Google創辦人之一Sergey Brin也宣佈Google將會投入部份雲端運算系統專供聯邦政府使用,此系統與Google提供給一般企業的系統相似,但會針對政府需求稍做修改。除了Google之外,Microsoft、Facebook、Salesforce.com及Vimeo等公司亦提供雲端運算服務予政府機關使用。

英國因劍橋分析個資外洩事件開罰臉書

  英國資訊專員辦公室(Information Commissioner’s Office, ICO)於2018年10月24日公告針對臉書公司(Facebook Ireland Ltd. & Facebook Inc.)之劍橋分析(Cambridge Analytica)個資外洩事件,依據英國資料保護法(Data Protection Act 1998)第55A條之規範,裁罰臉書公司50萬英鎊之罰鍰。   自2018年3月劍橋分析違法取得與使用臉書個資事件爆發以來,估計約有8700萬筆臉書上的個人資料遭到違法使用,引起全球對於網路個資保護的重視。在遭到違法取得與使用的個資當中,也包含了歐盟以及英國臉書使用者的個資,因此英國ICO有權對此事件展開調查並對臉書公司進行裁罰。   根據英國ICO的調查,自2007年至2014年間,臉書公司對於其平台上的個資處理(processed)有所不當,違反資料保護法之資料保護原則(Data Protection Principle,DPP),包含未適當處理個人資料(DPP1),以及未採取足夠的技術與作為防止未經授權或違法使用個資(DPP7),致使劍橋分析得以透過臉書公司提供之API違法取用臉書使用者個資。   由於劍橋分析事件發生時,歐盟GDPR(General Data Protection Regulation)尚未正式上路,因此英國ICO依據事件發生時之法律,亦即基於歐盟資料保護指令(Directive 95/46/EC)所訂定之英國資料保護法,裁處臉書公司50萬英鎊的罰款;若依據基於GDPR之新版英國資料保護法(Data Protection Act 2018),臉書公司將可被裁處最高1700萬英鎊或年度全球營業額4%之罰款。

英、美唱片業者控告YouTube-mp3.org侵權

  2016年9月國際唱片業協會(International Federation of the Phonographic Industry,簡稱IFPI)、美國唱片產業協(Recording Industry Association of America,簡稱RIAA)及英國唱片產業協會(British Phonographic Industry,簡稱BPI)對全球最大的串流音樂翻錄網站「YouTube-mp3.org」展開法律行動,指控該網站違反YouTube的服務準則,且侵害音樂著作權。目前該案件由美國加州聯邦法院審理。   「YouTube-mp3.org」將串流音樂變成可供下載的音樂檔案,使用者只需在該網站(YouTube-mp3.org)複製貼上原YouTube的音樂影片網址,即能將其轉為MP3檔案下載使用。RIAA表示運營商透過該網站已經獲利數百萬美元的廣告收入,卻未支付任何金錢報酬給音樂家或著作權權利持有人,因此控告YouTube-mp3. org及該站負責人Philip Matesanz侵害著作權。BPI則表示,使用者得透過各種串流服務存取合法音樂,若對此非法轉載音樂的業者或行為不提出法律行動,將會影響合法的音樂串流服務。   另一方面,德國聯邦部門(German Federal Ministry ) 早在2011年時曾認定,從Youtube網站複製下載音樂為非商業之私人行為合法。而電子前線基金會(Electronic Frontier Foundation,簡稱EFF)對於英美唱片業協會要求法院消除此類型網站一事持否定看法,認為法律不應賦予著作權人或商標所有人修訂刪除網站的權力。

歐盟執委會通過關於《人工智慧責任指令》之立法提案

  歐盟執委會(European Commission)於2022年9月28日通過《人工智慧責任指令》(AI Liability Directive)之立法提案,以補充2021年4月通過之《人工智慧法》草案(Artificial Intelligence Act)。鑑於人工智慧產品之不透明性、複雜性且具自主行為等多項特徵,受損害者往往難以舉證並獲得因人工智慧所造成之損害賠償,《人工智慧責任指令》立法提案即為促使因人工智慧而受有損害者,得以更容易獲得賠償,並減輕受損害者請求損害賠償之舉證責任。   《人工智慧責任指令》透過引入兩個主要方式:(一)可推翻之推定(rebuttable presumptions):人工智慧責任指令透過「因果關係推定(presumption of causality)」來減輕受損害者之舉證責任(burden of proof)。受損害者(不論是個人、企業或組織)若能證明人工智慧系統因過失或不遵守法規要求之義務,致其受有損害(包括基本權利在內之生命、健康、財產或隱私等),並且該損害與人工智慧系統之表現具有因果關係,法院即可推定該過失或不遵守義務之行為造成受損害者之損害。相對的,人工智慧之供應商或開發商等也可提供相關證據證明其過失不可能造成損害,或該損害係由其他原因所致,以推翻該損害之推定。(二)證據揭露機制(disclosure of evidence mechanism):若受害者之損害涉及高風險人工智慧時,得要求自該供應商或開發商等處獲取證據之權利。受害者透過證據揭露機制能夠較容易地尋求法律賠償,並得以找出究責的對象。   歐盟執委會認為以安全為導向的《人工智慧法》,為人工智慧訂定橫向規則,旨在降低風險和防止損害,但仍需要《人工智慧責任指令》之責任規定,以確保損害風險出現時,相關賠償得以被實現。但歐盟執委會仍選擇了較小的干預手段,《人工智慧責任指令》針對過失之責任制度進行改革,並未採取舉證責任倒置(a reversal of the burden of proof)之作法,而是透過「可推翻之推定」,一方面減輕受損害者之舉證責任,使受損害者得對影響人工智慧系統並產生過失或侵害行為之人提出損害賠償;另一方面賦予人工智慧之供應商或開發商等有機會推翻前揭造成損害之推定,以避免人工智慧系統之供應商或開發商面臨更高的責任風險,可能阻礙人工智慧產品和服務創新。

TOP