日本總務省公布「2006年版資訊通信白皮書」

  日本資訊通信領域主管機關「總務省」 7 4 公布「 2006 年版資訊通信白皮書」。本年度白皮書除按照慣例闡述資訊通信政策之實施現況(第 2 章)以及今後推動方向(第 3 章)外,更本諸過去數年「 u 化社會」( ubiquitous network society )願景之研析成果與發展脈絡,將 u 化社會之願景與現實生活的技術或應用發展趨勢兩相比較,指出於逐步邁向該等願景的同時,社會整體經濟結構的特性也開始有所變化。


  基於前開變化主係肇因於技術變遷、應用普及、逐步邁向
u 化社會願景之故,本年度白皮書第 1 章乃將之稱為「 u 化經濟」( ubiquitous economy ),並認為自宏觀角度而言,資通產業對於國家經濟實力之貢獻有增無減;另自微觀角度而言,個別用戶的重要性將會更加凸顯,資訊的流通傳遞也會更有效率,而本諸知識迅速累積分享的結果,生產力同樣可望大幅提昇。今後亦當本諸此等認知,規劃能令個別用戶放心使用之安全環境,弭平基礎建設未能完全普及之數位落差現象,預先具體指明可能發生之爭議課題,妥善探究適合 u 化社會願景實現之因應對策,以利全體國民均能充分享用 u 化社會所能帶來的福祉。

相關連結
※ 日本總務省公布「2006年版資訊通信白皮書」, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw//article-detail.aspx?d=552&no=57&tp=1 (最後瀏覽日:2026/01/26)
引註此篇文章
你可能還會想看
因應巨量資料(Big Data)與開放資料(Open Data)的發展與科技應用,美國國會提出「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act)

  美國國會議員Markey與Rockefeller於2014年2月提出S. 2025:「資料仲介商有責與透明法草案」(Data Broker Accountability and Transparency Act),以促進對於消費者保護,與資料仲介產業發展間的平衡。該草案預將授權「美國聯邦貿易委員會」與各州據以監督與執行。   該草案對「資料仲介商」(以下簡稱Data Broker)加以定義為係以銷售、提供第三方近用為目的,而蒐集、組合或維護非其客戶或員工之個人相關資料的商業實體;更進一步的禁止Data Broker以假造、虛構、詐欺性的陳述或聲明的方式(包括提供明知或應知悉為偽造、假造、虛構、或詐欺性陳述或聲明的文件予以他人),自資料當事人取得或使其揭露個人相關資料。   該草案亦要求Data Broker建置及提供相關程序、方式與管道,以供資料當事人進行下列事項: 1.檢視與確認其個人相關資料(除非為辨識個人為目的的姓名或住址)正確性(但有其他排除規定)。 2.更正「公共紀錄資訊」(Public Record Information)與「非公共資訊」(Non-public Information) 3.表達其個人相關資料被使用的時機與偏好。例如在符合一定條件下,資料當事人得以「選擇退出」(Opt Out)其資料被Data Broker蒐集或以行銷為目的而販售。   於此同時,加州參議院亦已於2014年5月通過S.B. 1348:Data Brokers的草案,該草案要求資料當事人擁有檢視Data Broker所持有的資料,並得要求其於刪除提出後10天內永久刪除;當資料一經刪除,該Data Broker不得再行轉發或是將其資料販售給第三人。加州參議院並提案,該法案通過後將涵蓋適用至2015年1月1日所蒐集的資料,且個人於Data Broker每次違反時得提出$1,000美元的損害賠償訴訟(律師費外加)。雖然該草案受到隱私權保護團體的支持,卻受到加州商會(California Chamber of Commerce)與直銷聯盟(Direct Marketing Association)的反對。加州在Data Broker的立法規範上是否能超前聯邦的進度,讓我們拭目以待吧。

歐盟對中小型生技公司提供藥政管理之費用優惠及專業協助

  中小型公司是生技產業發展的主力,然藥物研究發展模式風險及資金需求甚高,對資金不豐沛的中小型公司來說,無疑是一大負擔,因此,各國政府於促進生技醫藥產業發展之同時,相當重視如何減輕這些生技製藥公司的營運壓力,進而協助其順利茁壯。   現今歐盟境內至少有1500家中小型生技公司,為減輕這類研發導向的中小型製藥公司之財務負擔,並提供一些藥政管理上的專門協助,歐盟於去2005年12月15日通過了〝歐盟醫藥品管理局協助中小型公司發展規則(COMMISSION REGULATION (EC) No 2049/2005 laying down, pursuant to Regulation (EC) No 726/2004 of the European Parliament and of the Council, rules regarding the payment of fees to, and the receipt of administrative assistance from, the European Medicines Agency by micro, small and medium-sized enterprises,以下簡稱本規則)〞。   本規則主要是希望EMA(European Medicines Agency, 即歐盟醫藥品管理局)能透過相關規費之減免及提供科學諮詢的方式,降低中小型公司新藥上市申請費用(一般而言,人類用新藥於歐盟上市需支付14 萬歐元的申請費用),進而促進技術創新及新藥研發。另為協助中小型公司能更快速及方便地利用到這些優惠,本規則特要求EMA應於其內部建立〝中小企業辦公室(SME Office)〞,並製作詳細之使用者手冊(User Guide)供中小型公司參考。   台灣大部分的生技製藥公司亦屬中小型,故政府應思考如何幫助這些公司成長茁壯。雖然我國對生技製藥產業相關已提供投資抵減優惠,但卻無特別針對中小型生技製藥公司的藥政管理法規,歐盟前述立法及其精神值得我國借鏡。

為確保使用奈米科技醫藥產品的安全性,美國參議員提出2010奈米科技安全法案

  美國食品暨藥物管理局(U.S. Food and Drug Administration,以下簡稱FDA)向來負有保障境內國民健康與人身安全之義務,於今(2010)年1月底,美國參議員Mark Pryor提出「2010奈米科技安全法案」(The Nanotechnology Safety Act of 2010, S.2942),擬授權FDA對使用奈米科技的醫藥與健康產品(medical and health products)進行管理規範。   「2010奈米科技安全法案」規劃將在聯邦食品、藥物與化妝品管理法(Federal Food, Drug and Cosmetic Act)的第十章中加入第1101節「奈米科技研究計畫」 (Nanotechnology Program),透過設置研究計畫對FDA管轄範圍內的產品展開調查,藉由研究進一步了解奈米材料對於生物體的作用與影響,經由對奈米材料毒性的認識,歸納出原則性規範,並將奈米材料依照等級劃分,建立以科學證據為基礎的資料庫,同時於內部單位設置奈米材料專家以供諮詢,故為利於日後收集相關科學證據資料作為資料庫之用,協助管理規範上可供參考與遵循之依據,FDA將研究與分析奈米材料係如何被人體吸收,以及如何設計奈米材料使其得以運載對抗癌症之藥物以消除腫瘤,抑或是植入骨骼的奈米級組織是如何強化關節並減少不必要的感染等,未來本法案若順利通過,FDA將對於使用奈米材料之醫藥品、醫療器材與食品添加劑進行規範。   美國參議員Pryor再度重申,FDA需要相當之資源與經費建立以科學證據為基礎的規範體系架構,確保以奈米材料為成分的醫藥健康產品係安全有效,若無相關研究提供完善證據資料,將無從檢驗含有奈米材料的醫藥健康產品,也將無從保障國民之健康安全,故未來期望此一法案之通過將授權FDA投入管理規範體系之建置,亦將有助於實踐以奈米科技改善人類健康與降低醫療成本之理想。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP