美國將重新檢討網域管理政策

  美國商業部將於 2006 年 9 月底前舉行針對網域管理的公聽會,檢討美國政府目前對於網域名稱的管理作為,並討論是否將取消對網域名稱的限制與管理。美國這項舉動是回應部分國家對於美國現行網域管理政策的不滿。


  目前美國政府主要透過對「網域名稱與位址管理機構」( the Internet Corporation for Assigned Names and Numbers ; IC ANN )的控制,來管理所有”.com” 的網域,並擁有否決網域名稱申請案的權力。美國對於網域的控制,引起部分國家的政府及評論家的批評,認為美國政府對網域的過度干預,已經影響了全球通訊及商業運作的基礎。舉例而言,由於美國政府強烈反對,使專用色情網域”.xxx”申請案遭 ICANN 否決一事,升高了歐盟執委會對美國政府過渡干預網域管理的不滿。


  為平衡國際輿論壓力,美國商業部預定於 2006 年 9 月底前召開公聽會,討論往後網域管理的程序及方式,並計畫於 9 月 30 日改變目前對 ICANN 的管理策略。

相關連結
※ 美國將重新檢討網域管理政策, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=553&no=57&tp=1 (最後瀏覽日:2026/02/13)
引註此篇文章
你可能還會想看
產業創新條例因應放寬公司研發抵減、加強留才制度之修正草案

美國《代幣分類法》(Token Taxonomy Act)草案

  目前,美國證券管理委員會(U.S. Securities and Exchange Commission, SEC)對於數位貨幣的態度傾向於將代幣視為有價證券。《代幣分類法》(Token Taxonomy Act)草案則是持反對意見的聲浪¬,由美國眾議員Warren Davidson為首,並且獲得跨黨派多位眾議員的支持。《代幣分類法》主要的訴求是希望可以將數位代幣排除於證券,進而排除虛擬貨幣之稅務。重點有三: 修正《證券交易法》,將數位代幣排除於證券 將「數位代幣」(Digital Token)定義為驗證交易或遵循規則防止交易被竄改之「數位單元」(Digital Unit,以電腦可讀取的形式儲存,用於表彰經濟、財產上權利,或存取權限)。同時,在原先「證券」(Security)的定義中,排除「數位代幣」;另將證券「交易」(Exchange)交易排除數位貨幣適用。 擴張銀行之定義 修改「銀行」之定義。原先《1940年投資顧問法》和《1940年投資公司法》所指之「銀行」,包括「取得存款或執行信託權利(Fiduciary Powers)」等與准許經營銀行執行雷同事業者,是否為公司不在所問(Incorporated)。《代幣分類法》將之擴張為「取得存款、提供保管服務(Custodial Services)或執行信託權利」。 修正將虛擬貨幣視為免課稅對象 虛擬貨幣(Virtual Currency)定義為表彰數位價值之交易媒介且不是貨幣。並修正美國《1986國內所得稅法》(Internal Revenue Code of 1986),將虛擬貨幣交易視為免課稅之交易,並將總額小於600美金的虛擬貨幣買賣或交易之所得,排除於總收入(Gross Income)之外。   然而,目前美國證券管理委員會的態度仍未改變,並且於2019年4月3日發表〈數位資產「投資契約」分析之架構〉(Framework for “Investment Contract” Analysis of Digital Assets)。該分析架構說明:凡符合Howey Test之標準的「投資契約」即屬於「證券」,有《證券交易法》的適用。〈數位資產「投資契約」分析之架構〉甫發表,Warren Davidson與另外五位眾議員隨即重新提起2019年版的《代幣分類法》草案,是繼2018年9月、2018年12月第三度提起相關法案。楊安澤(Andrew Yang,美國首位角逐總統的華裔候選人)在2020年民主黨黨內總統初選政見中,亦援引《代幣分類法》草案,希望可以與連署《代幣分類法》草案的美國國會議員和懷俄明州(Wyoming)的立法者,共同擘畫有利於商業與人民的數位資產框架。

Ofcom公佈「2014年通訊基礎建設報告」

  英國電信管制機關Ofcom於2014年12月8日提出第二版通訊基礎建設報告(Infrastructure Report 2014)。依據英國2003年通訊法(Communications Act 2003)規定,Ofcom必須每三年向英國文化、媒體與體育大臣(Secretary of State for Culture, Media and Sport)提出英國電子通訊網路及服務檢討報告,此次報告是在2011年11月第一版通訊基礎建設報告之後,對於英國現有政策施行情況再進行檢討,重點在於檢視目前整體基礎設施建設情形,內容大致可區分為:1. 網路及服務的覆蓋率、成效以及範圍、2. 頻譜使用、3. 基礎設施共享、4. 安全性與彈性。   在未來整體的規劃上,報告指出以下三項是未來決策者可能會面臨的挑戰,在政策推行與改善時應該一併考量。   一、寬頻普及服務義務:在固網寬頻部分,2009年英國政府推行寬頻普及義務(Universal Service Commitment for Broadband),目前英國超過2Mbit/s的寬頻覆蓋率已達97%,超過10Mbit/s的寬頻覆蓋率則達到85%。在高速寬頻方面,目前已達75%覆蓋率,家戶可接取寬頻速度至少有30Mbit/s。英國政府希望能在2017年使95%可達接取24Mbit/s以上之寬頻。   在行動網路覆蓋率部分,目前英國政府投注一億五仟萬英鎊在新的基礎建設上,希望將行動網路覆蓋率普及於未有服務的家戶,並配合其他政策增加覆蓋率,例如以漫遊、靜態基礎設施共享或MVNO業者來完成。   二、新科技廣泛運用於市場:目前,手機營運商積極推展4G服務,希望終端用戶能達98%之覆蓋率。但在推行之際,尚需要政府的補助,以及法規政策的調整。   三、檢視未來基礎建設的發展:為促進不同科技產業的發展,對固網與行動寬頻速度不斷地進行改善仍為現階段重要的推行項目。因此,應定期依據市場的供需,持續進行政策上的調整。   此外,報告指出,將來在前述三項主要政策推行目標上,除了考量基礎建設應達成的網路速度以外,符合民眾需求的品質經驗等因素亦應一併在政策施行之時納入考量。Ofcom提出之報告重點在於能提供目前英國通訊基礎建設政策推行時之參考指標,此在後續我國的通訊基礎建設方面,亦能做為參酌,以因應物聯網或其他新興科技的迅速發展。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP