西班牙政府要求網路搜尋引擎業者Google刪除有關於90位公民之個人資料搜尋結果。西班牙政府主張當事人具有「被遺忘之權利」(the right to be forgotten),但Google認為西班牙政府之要求將衝擊表達自由之權利。目前全案已進入訴訟程序。
該事件之主因為西班牙民眾發現透過網路搜尋引擎,可以搜尋包含地址、犯罪前科等個人資料。經民眾向西班牙隱私權保護機關(Spain Data Protection Agency)提出申訴後,西班牙政府命令Google刪除申訴民眾之個人資料之搜尋結果。
然而,Google的全球隱私顧問Peter Fleischer於個人部落格中提出個人意見,表示目前歐盟並未對於推行之「被遺忘之權利」給予明確定義,此舉將引起資訊科技發展與法律規範間之爭議。
近來歐盟所進行之民意調查指出,多數歐洲人希望能夠隨時要求網路公司刪除於網路上公開之個人資料,也就是希望擁有「被遺忘之權利」。所謂「被遺忘之權利」,係指只要是於網路上流傳且容易被搜尋之個人資訊,例如年代久遠或是令人尷尬的內容,當事人皆有權利要求刪除。
然而,根據1995年歐盟隱私保護指令(EU Data Protection Directive)所制定之各國個人資料保護法,對於「被遺忘之權利」並無著墨。故有些專家認為,為因應資訊科技之發展,應透過個人資料保護法制之修訂,確認此權利之存在,以避免模糊不清之情形。
越來越多消費者由網際網路觀賞視訊內容,保護新興視訊業者之市場競爭力也越加重要。美國參議員John D. Rockefeller於2013年11月發佈「消費者網路視訊選擇法(Consumer Choice in Online Video Act)」草案,塑造一個以消費者需求為中心的視訊市場,提供完全的單頻單賣(a la carte),使消費者有權力選擇想看的節目、決定想看的時間、挑選收看的方式,並且只為真正收看的內容付費。 此外,本法案亦規範網路服務業者必須提供消費者更完整精確的帳單資訊,以增進消費者權益。在促進市場競爭的目的下,本法案也賦予新興視訊產業基本的保護,防止既有業者之反競爭行為,使市場能有效競爭,帶給消費者更多利益。 該法案的主要規範內容簡介如下: ‧管制既有之有線電視、衛星電視與大型媒體公司對網路視訊服務業者的反競爭行為。 ‧提供網路視訊服務業者合理的取得各種節目內容之能力,使他們能提供給消費者更多節目與服務的選擇。 ‧管制寬頻服務業者不得降低其市場競爭者之網路傳輸品質,以保護網路視訊業者接觸消費者、提供服務的管道。 ‧提供消費者更為透明與容易理解的帳單資訊。消費者在申請網路服務時,將能得到更為清晰易懂的服務契約與條款的資訊。 ‧指示聯邦通信委員會持續監督寬頻服務之資費條件,確保這些資費條件不被用於反市場競爭行為。 隨著寬頻服務的普及,網際網路能夠提供更多元的內容,一方面消費者能夠有更多的選擇,確保市場持續有效競爭是非常重要的,本法案對我國而言亦有相當參考價值。
韓國發布人工智慧基本法韓國政府為支持人工智慧發展與建立人工智慧信任基礎,提升國家競爭力,韓國科學技術情報通訊部(과학기술정보통신부)於2025年1月21日公布《人工智慧發展與建立信任基本法》(인공지능 발전과 신뢰 기반 조성 등에 관한 기본법안,下稱AI基本法),將於2026年1月22日起生效。韓國《AI基本法》為繼歐盟《人工智慧法》(EU Artificial Intelligence Act)之後第二部關注人工智慧的國家級立法,並針對高影響人工智慧(고영향 인공지능)及生成式人工智慧進行規範,促進創新及降低人工智慧風險,將搭配進一步的立法與政策以支持人工智慧產業。 《AI基本法》有以下三個政策方向: 1. 人工智慧基本計畫:由科學技術情報通訊部制定並每三年檢討「人工智慧基本計畫」,經「國家人工智慧委員會」審議後實施,決定產業發展政策、培育人才、健全社會制度等事項。本法並設置人工智慧政策中心及人工智慧安全研究所,提供科學技術情報通訊部所需的研究與分析。 2. 扶持產業發展:以扶持中小企業及新創企業為發展方向,促進產業標準化的基本政策,爭取國際合作及海外發展。 3. 人工智慧倫理與安全性:政府公布人工智慧倫理原則,由相關機構及業者自主成立人工智慧倫理委員會,在政府發布的指引下建立貼近實務面的倫理指引。本法明確要求人工智慧產業必須負擔透明性及安全性義務,政府也推動認驗證制度,以確保人工智慧的可靠性。 韓國《AI基本法》將人工智慧發展方向及社會政策結合,明確要求政府制定人工智慧發展計畫並定期檢討,施行具體措施與設置必要組織,確立政府在人工智慧領域的角色,然產業界對於政府監管力度之意見有所分歧,為《AI基本法》後續相關政策及指引推動種下不確定性,值得持續追蹤相關動態作為我國人工智慧發展策略之參考。
歐盟於2020年3月提出「歐洲氣候法」草案以實踐零碳排願景歐盟執委會(European Commission)於2020年3月6日提出「歐洲氣候法」(European Climate Law)草案,執委會提出該草案之目的,係為實現2019年「歐盟綠色新政」(European Green Deal)所確立的目標,以敦促歐盟所有政策及公、私部門,皆能為零碳排願景共同努力。歐盟期望在2050年前成為世界第一個碳中和地區,並轉型為一個經濟成長卻不損及資源消耗與開採的綠色經濟體。該法性質屬於「規則」(regulation)的法律位階,具有普遍性規範效力,得直接適用於歐盟成員國,意即歐盟成員國必須遵守及實施歐洲氣候法的規範內容。「歐洲氣候法」草案全文共11條條文,其規範重點及法制架構,簡要整理如下: 氣候法草案之法律框架應與歐盟現行政策保持一致性,例如再生能源、綠色新政下的投融資計畫、產業戰略及循環經濟行動計畫等,並審查歐盟能否將原先2030年與1990年相比減少40%的減量目標,提高至減少50至55%。 法律基礎應奠基於維護、保護及改善環境品質,輔助及加強國家與地方因應氣候變遷的行動措施;在符合比例原則下,要求歐盟成員國針對氣候中和目標採取必要保護措施。 依據歐盟基本權利憲章第37條環境保護之要求,有關高標準之環境保護及環境品質改善,必須納入歐盟政策及符合永續發展原則;透過氣候法來促成及凝聚社會轉型的共識,該法要求執委會應促進利害關係人及公民社會的參與,增強公民參與的交流,透過社會參與達成廣泛的永續發展共識,並規劃多層次氣候與能源的社會對話。 考量歐盟內部公平且團結的重要性,執委會於2023年9月開始,每隔5年將監測與評估歐盟及各會員國之綱要政策與保護行動,並針對不一致行動或保護不足情形,將提供適當的改善建議及具體措施,藉以確保歐盟成員國彼此間氣候政策與歐盟框架保持一致。 歐盟執委會期望透過具有強制約束力的法制框架,除實現巴黎協定之承諾(2050年前達到零排放之願景)外,更是為了結構性脆弱與抵禦氣候變遷能力不足的成員國,提供一個公平的轉型框架。目前該草案已於2020年5月完成公眾意見徵集,歐盟執委會雖未明確公布預計通過的日期及相關規劃,但其將於2021年6月前盤點相關規範,藉以整體性調修法制規範與氣候治理行動。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。