有關在網路販售仿冒品所透過之網路交易平台業者是否應負法律責任之問題,歐盟法院(Court of Justice of the European Union)於2011年7月12日針對L’oreal v. eBay案作出判決,認為如eBay之網路交易平台業者應為平台使用者之商標侵權行為負責。
國際知名化妝品品牌L’oreal 於2007年對eBay提出多項商標侵權之控訴,L’oreal認為eBay沒有適當的管控阻止其交易平台使用者之商標侵權行為,其包括在交易平台上販售仿冒品及非賣品,進行平行輸入販售非給歐盟市場流通之商品給位在歐盟會員國之人,以及購買網路關鍵字廣告協助交易平台使用者找到仿冒L’oreal品牌之商品,但eBay認為其適用歐盟電子商務指令(EU E-Commerce Directive)下之有關網路服務業者之免責條款。
歐盟法院之判決認為,網路交易平台業者若有扮演主動的角色,對仿冒商品之販售資料有掌控或知曉,則歐盟電子商務指令之免責條款應不適用,另外,若網路平台交易業者雖然沒有扮演主動的角色,但知道在其交易平台有商標侵權之販售行為但並沒有採取任何阻止行動,則網路平台業者也無法享有上述之免責權。同時,歐盟法院也認為各國法院應可以要求網路交易平台業者採取動作停止及防止交易平台使用者之侵權行為。
聯合國教科文組織於2020年9月發布《人工智慧倫理建議書》草案(First Draft Of The Recommendation On The Ethics Of Artificial Intelligence)(下稱建議書),以全球性的視野與觀點出發,為第一份全球性關於人工智慧倫理的建議書,試圖對人工智慧倫理作出框架性規定,對照其他區域性組織或個別國家人工智慧倫理準則或原則,著重之處稍有差異。該建議書係由組織總幹事Audrey Azoulay於2020年3月任命24位在人工智慧倫理學方面之跨領域專家,組成專家小組(AD HOC EXPERT GROUP, AHEG),以《建議書》的形式起草全球標準文書。 其主要內容提到六大價值觀:(一)人性尊嚴(Human dignity)、(二)基本人權和自由(Human rights and fundamental freedoms)、(三)不遺漏任何人(Leaving no one behind)、(四)和諧共生(Living in harmony)、(五)可信賴(Trustworthiness)、(六)環境保護(Protection of the Environment)。其中尤值關注處在於,建議書除強調人工智慧的技術、資料及研究需要進行全球範圍的共享外,相當重視世界上所有的國家及地區在人工智慧領域是否能均衡發展。特別在六大價值觀中提出「不遺漏任何人」觀點,也同時呼應了聯合國永續發展目標(Sustainable Development Goals, SDGs)的倡議。在人工智慧技術發展過程中,開發中國家(global south)及相對弱勢的群體是相當容易被忽略的。人工智慧蓬勃發展的時代,若某些群體或個體成為技術弱勢者,不僅在技術發展上有落差,更可能使人工智慧系統容易產生歧視、偏見、資訊和知識鴻溝,其後更將導致全球不平等問題的挑戰。 由專家小組起草的建議書草案已於2020年9月提交給聯合國成員國,作為對建議書的初步報告。該報告將提供給各會員國,並同步提交給預定於2021年召開的政府專家委員會,最後預計於2021年底的提交聯合國教科文組織大會。
加州新修正法規要求公司董事會必須包括女性加利福尼亞州(下簡稱加州)州長Jerry Brown於2018年9月30日簽署了一項新法案,規定在加州註冊成立的上市公司以及總部位於加州並在美國證交所上市的外國公司(如德拉瓦州公司),都必須在2019年底之前,於其董事會安排至少一位女性擔任董事,否則將面臨處罰;而此項新規定,亦使加州成為美國第一個要求上市公司將女性納入董事會的州。 此項規定並規定,在2021年年底前,若董事會的規模為6名以上,至少需有3名女性董事,若董事會的規模為5名成員,則至少需有2名女性董事,若董事會規模為4名以下董事,則至少需有1名女性董事。違反此項規定,將受到以下處罰:(1)首次違反處以10萬美元的罰款;(2)再度違反處以30萬美元的罰款,隨後再處以每次違反的罰款。 根據統計,日前在美國3000家最大的上市公司的董事會組成中,女性僅占其中18%,於2017年,更有624家上市公司的董事會中根本沒有女性。該法案表明,促進公司董事會性別平等不僅可以改善所有女性的職場機會,同時還能提高生產力,其依據是瑞士信貸(Credit Suisse)於2014年所作出的一項研究,該研究發現,擁有全男性董事會的公司,其平均股本回報率(Return on Equity, ROE)為10.1%,而擁有至少一名女性董事的公司,其平均股本回報率為12.2%。 根據彭博社(Bloomberg)於2019年的一項新分析,此項變革可為女性提供692個席次,並足以導致美國公司董事會整體性別平衡產生顯著的變化。此外,新紐澤西州(New Jersey)和馬薩諸塞州(Massachusetts)亦在考慮進行類似的立法,其他州也通過了不具拘束力的準則。根據統計,若其他州採用和加州相同立法,羅素3000(Russell 3000)中的公司需要在幾年內為女性開放3732個董事會席次,全國董事會的女性人數將增加近75%。 縱使該法案的反對者認為,這將增加企業改善種族和民族多樣性的難度,並質疑法案的適法性,然該法案的提出者仍認為,此一措施對於提升女性的代表權是必要的,相信當董事會組成多元化,女性的聲音能被聽到時,對整體勞動力的改善會是更好的。
英國倫理機構針對海量資料(big data)之使用展開公眾諮詢調查納菲爾德生物倫理學理事會(Nuffield Council on Bioethics)成立於1991年,是一家英國的獨立慈善機構,致力於考察在生物與醫學領域新近研究發展中所可能牽涉的各項倫理議題。由該理事會所發表的報告極具影響力,往往成為官方在政策決策時之依據。 有鑑於近年big data與個人生物和健康資料的分析使用,在生物醫學研究中引起廣泛的爭議討論,此間雖然不乏學者論理著述,但對社會層面的實質影響卻較少實證調查研究。Nuffield Council on Bioethics於日前發布一項為期三個月(2013/10/17~2014/01/10)的生物暨健康資料之連結使用公眾諮詢調查計畫(The linking and use of biological and health data – Open consultation)。此項計畫之目的在於,瞭解更多有關資料連結與使用時所可能導致之傷害或可能的有利發展。並研析適當的治理模式和法律措施,使得民眾隱私權保護與相關研究之合法性得以兼顧,俾使更多人受益。 為執行此項計畫,Nuffield Council on Bioethics延攬健康照護資訊技術、資訊治理、健康研究、臨床診療、倫理和法律等領域專家組成計畫工作小組,由工作小組廣泛地蒐集來自民眾與各類型組織的觀點,探詢當民眾在面對個人的生物與健康資訊相互連結、分析時,民眾對當中所牽涉倫理議題之看法。該項公眾諮詢調查將針對以下重點進行: 1.生物醫學資料之特殊意義 2.新的隱私權議題 3.資料科學和資訊技術發展所造成之影響 4.在研究中使用已連結的生物醫學資料所可能帶來的影響 5.在醫學臨床上使用已連結的資料所可能帶來的影響 6.使用生物醫學研究和健康照護以外的生物醫學資料所可能帶來的影響 7.探討能夠在倫理上支持連結生物醫學資料的法律和治理機制 由於Nuffield Council on Bioethics被視為英國科學界的倫理監察員、政府智囊團,因此未來調查報告發布後對相關政府政策所可能產生的影響,當值得我們持續關注。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現